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1. NUMERAL SYSTEMS 
 
There are three basic concepts of a number representation: 

• sign-value notation, 
• subtractive sign-value notation, 
• positional notation (place-value notation). 

A sign-value notation represents numbers by a series of numerals whose sum 
show up the represented number. In the Ancient Egyptian numeral system, for 
example,  means hundred and  means ten (Tab. 1.1), so  means three 
hundred and ten (100 + 100 + 100 + 10). 
  
Tab. 1.1. Ancient Egyptian numerals 
Value 1 10 100 1000 

Hieroglyph 
   

Description Single stroke Heel bone Coil of rope Water lily 
(Lotus) 

Value 10 000 100 000 1 000 000 

Hieroglyph 
  

Description Finger Tadpole or Frog Man with both 
hands raised 
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Egyptian hieroglyphs were written in both directions (and even vertically). The 
main disadvantage of the Ancient Egyptian numeral system was that large 
numbers require a lot of hieroglyphs. For example, a large number like 999 needs 
27 hieroglyphs (                            ). 
 
Acrophonic Greek numerals 
A little bit shorter form of sign-value notation was based on Acrophonic Greek 
numerals1, innovated in the first millennium BC. Beside the symbols for 1, 10, 
100, 1000 and 10000, the system had intermediate symbol for 5 and compound 
symbols for 50, 500, 5000 and 50000. The compound symbols were made by 
combining the symbol 5 with the symbols 10, 100, 1000 and 10000, Tab. 1.2.    
 
Tab. 1.2. Acrophonic Greek numerals 
Value 1 5 10 5⋅10 100 5⋅100 1000 

Symbol I Γ or Π Δ Γ H Γ X 
Value  5⋅1000 10 000 5⋅10 000 Example: 2064 

Symbol  Γ M Γ X X Γ Δ I I I I 
 
Alphabetic Greek numerals 
Further improvements in a sign-value notation were achieved in the fifth century BC 
in the Alphabetic Greek numerals. Instead of using the separate set of symbols 
for numbers, values were assigned to lowercase letters of the old Greek alphabet 
based on their native alphabetic order, Tab. 1.3. 
 

Tab. 1.3. Values assigned to symbols in the old Greek alphabet 
Value 1 2 3 4 5 6 7 8 9 

Symbol α β γ δ ε ς ζ η ϑ 
Value 10 20 30 40 50 60 70 80 90 

Symbol ι κ λ μ ν ξ ο π  
Value 100 200 300 400 500 600 700 800 900 

Symbol ρ c τ υ ϕ χ ψ ω ϡ 
Value 1000 2000 3000 4000 5000 Example: 2064 

Symbol ,α ,β ,γ ,δ ,ε ,βξδ’ 
                                                 
1 The reason why this system is called acrophonic is because the numerals for 5, 10, 100, 
1000 are the first letters of the Greek words for these numbers, namely ΠΕΝΤΕ, ΔΕΚΑ, 
ΗΕΚΑΤΟΝ, and ΧΙΛΙΟΝ. 

Δ H

X M Δ
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Of the 27 letters, nine were for units (1, 2, …, 9), nine for tens (10, 20, …, 90) 
and nine for hundreds (100, 200, …, 900). To mark that a sequence of letters 
is in fact a number (and not a text), a special sign like a vertical dash or 
accent assign is placed after the numerals, i.e., σνζʹ which represents 
200+50+7=257. To write numbers larger than 1000, a similarly vertical 
dash sign is placed before the numerals and below the line of writing, such 
as ͵αϡπϑʹ representing 1000+900+80+9=1989.  
 
Glagolitic numerals 
The Glagolitic1 numeral system is similar to the Alphabetic Greek numeral 
system. To Glagolitic letters were assigned values based on their native 
alphabetic order, Tab. 1.4. Nine letters were for units (1, 2, …, 9), nine for tens 
(10, 20, …, 90), nine for hundreds (100, 200, …, 900) and remainder for 
thousands (1000, 2000,…). Numbers were distinguished from text by small 
square marks ♦, one before and one after each symbol. 
 

Tab. 1.4. Values assigned to symbols in the Glagolitic alphabet2 

Value 1 2 3 4 5 6 7 8 9 

Symbol a b v g d e ž ѕ z 

Value 10 20 30 40 50 60 70 80 90 

Symbol y i j k l m n o p 

Value 100 200 300 400 500 600 700 800 900 

Symbol r s t u f H Ѡ ć c 

Value 1000 2000 3000 4000 5000 Example: 2064 

Symbol č š Ⱜ я ю ♦š♦m♦g♦ 
                                                 
1 The Glagolitic is the oldest known Slavic alphabet. It was invented during the 9th 
century by the Byzantine missionaries St Cyril (827-869 AD) and St Methodius (826-885 
AD) in order to translate the Bible and other religious works into the language of the 
Great Moravia region. It is probably modelled on a cursive form of the Greek alphabet 
while their translations are based on a Slavic dialect of the Thessalonika area, which 
formed the basis of the literary standard known as Old Church Slavonic.  This old Slavic 
scripts had remained in use by Croats up to 19th century. 
2 The Croation version of symbols which was used about 14th century . 
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For example, a denotes a letter, while ♦a♦ denotes the numeral “1”. If needed, 
to represent numbers which are not assigned to any letter, two or more symbols 
would have to be adjoined together. For example, the number 2014 may be 
written as 2000+4+10 = ♦š♦g♦y♦. 
 
Subtractive sign-value notation 
Some improvements were made by subtractive sign-value notation. Roman 
numerals, for example, are generally written in descending order from left to 
right, but where a symbol of a smaller value precedes a symbol of a larger value, 
a smaller value is subtracted from a larger value, and the result is added to the 
total1. For example, M means thousand and I means one (Tab. 1.5), so MI 
denotes number 100111000 =+ , while IM denotes number 99910001 =+− .   
 
Tab. 1.5. Roman numerals2 
Value 1 5 10 50 100 500 1000 
Symbol I V X L C D M 

Value  5 000 10 000 50 000 100 000 500 000 1 000 000 
Symbol  V  X  L  C  D  M  

 
Note that there is no need for the zero in a sign-value notation. 
 
Sign-value notation was the pre-historic way of writing numbers and only 
gradually evolved into the positional notation, also known as place-value 
notation, in which the value of a particular digit depends both on the digit itself 
and its position within the number. 
 
Positional notation 
In the positional notation, a number is represented by a sign (plus or minus) and 
digits, while the digital coma or the digital point (depending on a country) 
separates an integer part of a number from its fraction. Unlike the sign-value 

                                                 
1 The notation of Roman numerals has varied through the centuries. Originally, it was 
common to use IIII instead of IV to represent four, because IV are the first two letters and 
consequently abbreviation for IVPITER, the Latin script spelling for the Roman god 
Jupiter. The notation which uses IV instead of IIII has become the standard notation in 
modern time, but with some exceptions. For example, Louis XIV, the king of France, 
who preferred IIII over IV, ordered his clockmakers to produce clocks with IIII and not 
IV, and thus it has remained [1].  
2 Roman numerals have remained in use mostly for the notation of Anno Domini years, 
and for numbers on clockfaces. Sometimes, Roman numerals are still used for 
enumerating the lists (as an alternative to alphabetical enumeration), and for numbering 
pages in prefatory material in books. 



1. Numeral Systems 15 

 

notation, there is an explicit need for zero in the positional notation. The number 
of digits with integer values zero, one, two, … that form a positional numeral 
system is called the base of the numeral system (e.g. if there are 10 digits with 
values from zero to nine, the base is 10). 
 
An integer number can be represented in a positional numeral system in base B with 
a sum of digits }1 ..., ,one ,zero{ −∈ Bdk  multiplied by powers k of the base B as 

 0
0

1
101 ...)...( BdBdBddddinumber n

nBn ⋅+⋅++⋅== . (1.1) 

A real number can be represented in base B as 

 .........),...( 1
1

0
010 +⋅+⋅++⋅== −

−− BdBdBddddrnumber n
nBn . (1.2) 

In both cases the leading zeroes are usually omitted assuming that nd  is first 
non-zero digit. 
 
Sexsagesimal system 
Possibly the oldest positional numeral system is a sexsagesimal system, used 
around 3100 B.C., in Babylon. It is a combination of the sign-value and the 
positional notation in base 60 [2].  
 
In Babylon, digits up to 59 were noted by using two symbols in the sign- 
-value notation: symbol  to count units and symbol  to count tens. These 
symbols  and  and their values were combined to form 59 digits in a notation 
similar to that of Roman numerals; for example, the combination  represented 
the digit with a value of 23 (Fig. 1.1).  

 
Fig. 1.1. Digits used in Babylonian numeral system 

3 13 23 33 43 53 

4 14 24 34 44 54 

1 11 21 31 41 51 

2 12 22 32 42 52 

5 15 25 35 45 55 

6 16 26 36 46 56 

9 19 29 39 49 59 

7 17 27 37 47 57 

8 18 28 38 48 58 

10 20 30 50 40 
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These 59 digits are then used in positional numeral system in base 60 as it is 
illustrated in Example 1.1. 
 

Example 1.1. Babylonian numerals: 

 231111010 =++++= , 
 30101010 =++= , 
 211 =+= , (1.3) 
 01

60 6016022)"1" 22"(" ⋅+⋅== , 
 .6030602)"30" 2"("  01

60 ⋅+⋅==  

 
The Babylonians did not have a digit for zero. What the Babylonians used instead 
was a space (and later a disambiguating placeholder symbol ) to indicate a 
place without value, similar to zero. 
 
In addition, Babylonians did not have any mark to separate integer from the 
fractional part of a number, but they calculated with real numbers, as it is 
illustrated in Example 1.2.    
 

Example 1.2. The Babylonian approximation of the square root of 2 in the 
context of Pythagoras’ theorem for an isosceles triangle. 
 
The approximation is illustrated on the round tablet that was, we believe, an 
education tablet from Ancient Babylonia, dated 1800 B.C. [3]. The tablet, Fig. 
1.2, has a square with both diagonals drawn in. On one side of the square is 
written 03  = , the length of the square side. If this is treated as a fraction of 
the number (i.e., as the first figure of the fraction), then  

 2/16003 1 =⋅= − . (1.4)  

Along one of the diagonals, the number is written 

  2...41421296,160/1060/5160/241  32 ≈=+++=  (1.5) 

and below it is the number 

 1/2...0,70710648/6035/605242/60  32 ≈=++= . (1.6) 
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Fig. 1.2. Round tablet illustrating approximation of square root [3] 

 
In fact, the number  is a remarkably good approximation of 

... 1,414213562 =  in four sexagesimal figures, which is about six decimal 
figures. Moreover, it is easy to see that 2≈  multiplied by 2/1  is 

2/1≈ , the diagonal length of the square of the side = 2/1 .  
 
Hexagesimal system 
This system must be distinguished from the sexsagesimal system, although both 
systems have the same base (and that is 60). One digit in the hexagesimal system 
is a decimal number from 0 to 59. Today, the hexagesimal system is used to 
express time (hours, minutes and seconds). 
 
Vigesimal system  
Another interesting positional system is a vigesimal system (base-twenty) used by 
the Pre-Columbian Maya civilization. The Maya numerals were made up by 
combining three symbols in signed value notation: zero (shell shape ), one (a 
dot ) and five (a bar ). The construction of 20 numerals (starting from zero) is 
shown in Tab. 1.6. For example, seventeen ( ) is written as two dots in a 
horizontal row above three horizontal bars stacked upon each other. 
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Tab. 1.6. Digits used in numeral system of Pre-Columbian Maya 

Value 0 1 2 3 4 

Glyph 
 

Value 5 6 7 8 9 

Glyph 
 

Value 10 11 12 13 14 

Glyph 
 

Value 15 16 17 18 19 

Glyph 
 

 
Because the base of the numeral system was 20, larger numbers were written 
down in powers of 20 from bottom to top. Fig. 1.3 shows how the number 2402 
was written. 
 

   2400206 2 =⋅  
   0       200 1 =⋅  
   2       202 0 =⋅  

           sum 2402=  
 

Fig. 1.3. Number 2402 in Maya numeral system 
 
As it can be seen, the addition is just a matter of adding up dots and bars. Maya 
merchants often used cocoa beans, which they laid out on the ground to do these 
calculations.  
 
Addition is performed by combining the numeric symbols at each level 

   +  =      ( 1367 =+ ). (1.7) 
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If five or more dots result from the combination, then five dots are replaced by a 
bar. If four or more bars result from the combination, then four bars are replaced 
by a shell and a dot is added to the next higher row. 
 
In subtraction, elements of the subtrahend symbol are removed from the minuend 
symbol: 

  −  =       ( 012 20162019205239662402 ⋅+⋅+⋅==− ). (1.8) 

If there are not enough dots in a minuend position, then a bar is replaced by five 
dots. If there are not enough bars, then a dot is removed from the next higher 
minuend symbol in the column and four bars are added to the minuend symbol 
being worked on. Note that this corresponds almost exactly to the traditional 
addition and subtraction in the common base 10. 
 
Counting rods 
As one of ancient decimal systems, counting rods were used by mathematicians 
for calculation in ancient China, Japan, Korea, and Vietnam for more than two 
thousand years. They are small bars, typically 3-14 cm long and placed either 
horizontally or vertically (Tab. 1.7). The written forms based on them are called 
rod numerals. That was a true positional numeral system with digits for 1 to 9, 
and later for 0. 
 
Tab. 1.7. Counting roads (traditional version) 

V
er

tic
al

 

Value 0 1 2 3 4 

Symbol  
Value 5 6 7 8 9 

Symbol   

H
or

iz
on

ta
l 

Value 0 1 2 3 4 

Symbol     
Value 5 6 7 8 9 

Symbol   
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4. RANDOM VARIABLES AND PROCESSES 
 
Numerical analyses in the engineering practice and sciences are performed over 
random variables. Roughly speaking, random variable is such a variable whose 
value is an outcome from an observation of a random process.  
 
A typical random variable is the temperature, i.e., a measure of the average 
kinetic energy of molecules, whose chaotic moving is a random process. Unlike 
the temperature, some other physical quantities are not random, but the random 
process is inherent to their observation. An example is the measured value of a 
mass. Although the mass of a body (in the non-relativistic physics) is a constant 
variable (Chapter 3), the random process is inherent to its measurement. Values 
observed by repeated measurements fluctuate randomly about some average1 so 
that each observed value of the mass, as well as an average of observed values, 
has a random component. 
 
Those random variables whose observed values fluctuate about some average 
may be expressed in the form similar to that in expression (3.2): 

 xxx Δ±=   @   C.L. (in %), (4.1) 

but with different interpretation of x  and xΔ . Herein, x  is either an average of 
the observed values or just a single observed value. The magnitude of 
indeterminacy in x  is quantified by the random error (or uncertainty) xΔ  with 
some trust referred to as a confidence level C.L. (in %). Before a detailed 
                                                 
1 Fluctuations around some average can be observed only if the scale of measuring 
equipment is precise enough. 
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explanation of the random error (uncertainty) and its propagation (the subject of 
Chapter 5) it is necessary to make brief introduction to random processes, 
probability distributions, probability density, expected values and averages, 
variances, co-variances and correlations. 
 
4.1 RANDOM PROCESSES 
 
A random (or stochastic) process is such a process which has some 
indeterminacy in its behaviour. There are various kinds of random processes. An 
example of a simple random process is illustrated in Fig. 4.1. 
  
  

 
 

Fig. 4.1. An example of a simple random process 
  

A blue ball is falling down through the labyrinth. At some crossings the ball can 
continue falling either left or right with equal probability, while at other crossings 
there is only one possible direction. This means that even when the initial 
condition (or starting point) is known, there are many (less or more probable) 
possibilities a random process might go to. 
 
The blue ball leaves the labyrinth at the one of nine exits A , B , C , …, H  or J  
(in Fig. 4.1 at the exit E ), what is then referred to as the one of nine elementary 
events A , B , C , …, H  and J . Events are described in Appendix A.1. 

EA  B  C D F G H J
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4.1.1 Definition of random variables 
A set of all possible outcomes of an observation can consist of countably many1 
(finite or infinite) or in uncountably many2 (infinite) elementary events.  
 
Assigning numbers to elementary events defines random variable. If there are 
countably many events, the random variable is discrete, otherwise it is 
continuous. Since events are occurring randomly, every random variable X  can 
be considered as a quantity that takes its value x  randomly from some (discrete 
or continuous) set of numbers kx  ( nk ,...,2,1= ).  
 

It should be emphasized that random variable in statistics is denoted with italic 
uppercase letter, while its values as well as constant variables are denoted with 
italic lowercase letter. On the contrary, in engineering practice and science both 
types of variables are denoted either with italic lowercase or italic uppercase 
letters. Most of these variables are random, while other are non-random. 

 
Every system of elementary events can be described either by a scalar random 
variable or by a random vector, whose components are several independent 
random variables. This must be distinguished from redundant random variables 
that are related to each other (see Example 4.1). 
 
Discrete random variables 
Events of the countable system of elementary events may be associated with 
natural numbers from some (finite or infinite) subset of natural numbers, or 
possibly with real numbers from some countable subset of real numbers. 
Assigning these numbers to the events of the countable system of elementary 
events defines a discrete random variable, Example 4.1. 
 

Example 4.1. Discrete random variables. 
 
A discrete random variable X in Tab. 4.1 is defined by its values 

}{1,2,...,9∈x  associated with the elementary events A , B , …, J  of the 
random process described with Fig. 4.1. Another discrete random variable 

XY =  in Tab. 4.1 is defined by its values }9,...,3,2{1,∈y  on the same 
events.  
   

                                                 
1 The elements of a countable set can be counted one at a time – although the counting 
may never finish. For example, natural numbers and rational numbers can be counted.  
2 Uncountable set is an infinite set that contains too many elements to be countable. For 
example, irrational numbers can not be counted even in a finite interval.  
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Tab. 4.1. Random variables associated to the labyrinth in Fig. 4.1. 
Event A B C D E F G H J 
X 1 2 3 4 5 6 7 8 9 
Y 1 2  3  4  5  6  7  8  9  

Random variables X and XY =  are strictly dependent, so that only one of 
them is sufficient; the second one is redundant. However, there are many other 
random variables that can be defined on the given system of events. 
 
The results of the observation given in Fig. 4.1 (blue ball leaves the labyrinth at 
the exit E ) are 5=x   and 5=y .  

 
Sometimes, events have “coordinates” in a multidimensional space. In such a case, 
a system of countably many elementary events will be described with a vector 
whose components are independent discrete random variables. A typical example 
for that is a countable system of elementary events zxy...A , denoted by indices 

zyx ,...,, , which are the possible values of independent random variables 
ZYX ,...,, . These random variables X to Z are then components of a random vector. 

 
Continuous random variables 
Elementary events of the uncountable system of events may be associated with 
real numbers from some uncountable set of real numbers. Assigning these 
numbers to the elementary events of the uncountable system of events defines a 
continuous random variable in the form of a scalar or a vector. 
 
Typically, a continuous random variable takes all the possible values in a 
continuous m-dimensional real domain Ω in which it is defined. In the one-
dimensional  space ( 1=m ), this domain may be either a finite interval ],[ ba , a 
semi-infinite interval as )[0,+∞ , or the infinite interval ),( +∞−∞ . 
 
Although there are uncountably many possible values in an interval ],[ ba  (either 
finite or  infinite), only the finitely many rounded values may be observed and 
then recorded in a finite precision, even when the scale of measuring equipment 
is analogue (what in theory implies infinite precision). That is, if the used format 
is a B bit wide binary format, then B2  different values kx  ( Bk 2,...,3,2,1= ) may 
be recorded. The number of possible values can be very large (e.g. if 32=B , 
then 296 967 294 4232 = ), but it is still countable and finite, Fig. 4.2. 
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Fig. 4.2 Ranges in the floating-point formats  

 
If recorded value kx  were rounded by truncation, then each of them would represent 
the finite interval ),[ 1+=Ω kkk xx  ( }12,...,3,2,1{ −∈ Bk ). If the lowest possible 
value 1x  denotes negative overflow ( −∞=1x ) and if the highest possible value Bx2  
denotes positive overflow ( +∞=Bx2 ), then the complete set of all possible intervals 

),[ 1+kk xx  ( 12,...,3,2,1 −= Bk ) builds the continuous and infinite interval ),( ∞−∞ .  
 
Although the values of continuous random variables cannot be used as indices in 
denoting elementary events (like discrete random variables), they can be used in 
describing uncountably many events by using a logical statement which includes 
inequalities with random variables and their values, Example 4.2. 
 

Example 4.2. Continuous random variables. 
The lifetime T of light-bulbs is a continuous random variable. An elementary 
event tT =  that the lifetime T of randomly selected light-bulb is exactly t is 
unobservable, because a real number can have an infinite number of nonzero 
decimal places. The scale of any measuring equipment has finite precision so that 
an event 21 tTt <≤  is observable when the observed lifetime T of randomly 
selected light-bulb takes a value within the interval ),[ 21 tt .  
 
Events 1+<≤ kk tTt  ( ,...2,1=k ), starting with 01 =t , build a complete system 
of countably many elementary events in the semi-infinite interval ),0[ ∞ .  

 
4.1.2 Quantification of random processes 
There are several methods to quantify a random process. Some of them, like  

• studying minimal population, or  
• studying equivalent non-random process, 

provide confident information about a random process, while in other, like 
• sampling, 

there is only a hope that conclusions made about a random process are valid enough. 

Negative numbers Positive numbers 

Sparser Denser Denser Sparser∞−  ∞+  0±

− max − min + min + max 

Overflow Overflow Underflow FP numbers − FP numbers + 
4444 34444 21                                    4444 34444 21                                    



126 Numerical Methods I, Basis and Fundamentals  

 

Population in statistics is an entire group (or collection) of entities (people, 
animals, things, etc.) or events that have something in common and about which 
some descriptions or conclusions are made. Examples of populations are: 
members of a club, all textbooks published last year by some publisher, all 
possible paths in the labyrinth, etc.  
 
More widely, population is every set of data that consists of all conceivably 
possible (or hypothetically possible) observations of a given phenomenon.  
 
Minimal population is a part of whole population with a minimal number of 
members required to quantify a random process. For example, the minimal 
population in the simple random process in Fig. 4.3a consists of all possible 
paths (eight of them), Fig. 4.3b. 
 

 
Fig. 4.3. Simple labyrinth, a – single path, b – population of paths 

 
A whole population may consist of a lot of equal minimal populations. A 
collection of several equal minimal populations quantify the same random 
process as only one of them. 
 
Population frequency 
Minimal population for the labyrinth in Fig. 4.3a consists of 8=n  paths (Fig. 
4.3b) that are ending at the exits A, B, C and D respectively in the quantities  
  1A =ϕ , 3B =ϕ , 3C =ϕ   and   1D =ϕ . (4.2) 

Quantities Aϕ , Bϕ , … are called population frequencies. It is obvious that  

  n<< ,...,0 BA ϕϕ    and   n=++ ...BA ϕϕ . (4.3) 
Population frequencies are proportional to the number of paths n.  
 
Probability 
If paths in Fig. 4.3b occur with the equal probability nP /1)path( = , then the 
probability )A(P  (Appendix A.2) that an elementary event A will occur is the 

A B C D 1A =ϕ 3B =ϕ 3C =ϕ 1D =ϕ
a b
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quotient 

 nPP /)path()A( AA ϕϕ == , (4.4) 

where ...BA ++= ϕϕn  is the sum of the population frequencies ... , , BA ϕϕ  for 
all events in the complete set of elementary events },...B,{A . 
 
In the given example (Fig. 4.3), 8=n , 125,0)path( =P  so that 

 125,0)A( =P ,   375,0)B( =P ,   375,0)C( =P    and   125,0)D( =P . (4.5) 

Unfortunately, random processes are not always that simple so that quantification 
of random processes by studying their minimal populations can not be applied to 
all of them. 
 
4.1.3 Equivalent non-random process 
A possible way to quantify a random process is to simulate it by an equivalent 
non-random process. Consider that some quantity (e.g. 1024) of equal balls1 
starts simultaneously falling down through the labyrinth in Fig. 4.4. 
 

 
Fig. 4.4. Streams of balls in the upper part of labyrinth in Fig. 4.1 

                                                 
1 Although the balls are initially equal, after passing through the labyrinth, each ball will 
have a path associated to it. Thus, after leaving the labyrinth, the balls will differ by their 
history. However, some balls can share the same history so that they can be equal. 

1024

512 512 

256 

128 128 

256 
256 256 

128 

64 

128 128 128 

192 
192 128 128 

320 192 

64 

64 160 32 160 64 32 256 256 

x 
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At those crossings where the single ball can continue falling either left or right 
with equal probability, the incoming stream of balls is divided into two equal 
streams: one going left and another going right. In this way, the random process 
in the labyrinth can be simulated by the equivalent non-random process. 
 
Consider now the non-random process equivalent to the random process in Fig. 4.1, 
in which all balls start falling down through the labyrinth, as it is illustrated in 
Fig. 4.4. Each ball can pass up to 10 crossings before it reaches an exit so that the 
stream of balls will be cut in two up to 10 times. Since a single ball cannot be 
divided, the results of those dividings must be integers greater or equal to the 
number 1. In the given example, this can be achieved by the minimal quantity of 

1024210 =  balls. 
 
Numbers between crossings in Fig. 4.4 represent the quantity of passed balls. At 
the entrance of the labyrinth the 1024=n  balls are divided into two streams of 
512 balls. Each stream is then divided into two sub-streams of 256 balls, etc. 
However, when two streams come to the same crossing, they are first merged and 
then divided. For example, two incoming streams of 320192128 =+  balls are 
merged at the crossing marked with “x” and then divided into two equal streams 
each containing 1602/320 =  balls. Finally, the balls are leaving the observed 
labyrinth at the exits (events A , B , C , …, H  and J ) in the quantities that are 
equal to the population frequencies Aϕ , Bϕ , …, Hϕ , Jϕ  (Tab. 4.2). 
 
Probability 
Probability )A(P  that an elementary event A will occur is the quotient 

 nP /)A( Aϕ= , (4.6) 

where ...BA ++= ϕϕn  is the sum of the population frequencies ... , , BA ϕϕ  for 
all events in the complete set of elementary events },...B,{A , Example 4.3. 
 

Example 4.3. Some properties of probability. 
 
Probabilities that a blue ball in the random process depicted in Fig. 4.1 will 
leave the labyrinth at the corresponding exit (elementary events A , B , …, J ) 
are 

 nP /)A( Aϕ= ,   nP /)B( Bϕ= , …,   nP /)J( Jϕ= . (4.7) 

The obtained probabilities are listed in Tab. 4.2. 
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6. REGRESSION 
 
Regression consists in fitting a function to a set of data points by finding such 
parameters in the function that provide the best fit. The fitted function is referred 
to as a regression model, while their graphical representation is referred to as a 
trendline. Regarding the applied function, the most popular regressions are  

• Linear regression 
• Polynomial regression 
• Exponential regression 
• Logarithmic regression 
• Power regression 

Other methods of fitting a function to a set of data points are described in 
Volume III and Volume IV of Numerical Methods. 
 
There are two approaches in performing regressions: the first approach when the 
variance in residual of a function is minimised, and the second approach when 
the variance in residuals of all variables is minimised. Regressions based on the 
first approach may be referred to as the “simple” so as to distinguish them from 
regressions based on the second approach, which are referred to as the 
“orthogonal”. 
 
6.1 LINEAR REGRESSION 
 
The most popular types of linear regressions are 

• Simple linear regression 
• Linear regression through a fixed point 
• Orthogonal linear regression 
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6.1.1 Simple linear regression 
In the regression model, the linear function 
 bxaxF +=)(  (6.1) 
is fitted to a set of N data points ),( yx  by finding those values of constants a and 
b that minimise the variance in residual. The residual yε  in each data point ),( yx   

 )(xFyy −=ε  (6.2)  

is the difference between the value y  and the value )(xF  predicted by the 
regression model for the given x. It represents a "vertical" distance between the 
observed data point and the fitted curve. This is illustrated in Fig. 6.1. 
 

 
Fig. 6.1. Residual in simple linear regression 

 
To explain the meaning of the residual yε , the function )(xF  should be 
eliminated from the expressions (6.1) and (6.2), giving 
 ybxay ε++= . (6.3) 
If x and y are both constant variables, then the residual yε  may be  

• the nonlinear component of the true function )(xy , which is excluded 
from the linear regression model, or 

• the function ,...),( 21 zzyy εε =  of independent variables ,..., 21 zz , whose 
influence to y  is unknown, whether or no the function ,...),( 21 zzyε  be 
unknown or variables ,..., 21 zz  are not observed together with x and y. 

In both cases, the regression model bxaxF +=)(  is just an approximation of the 
true function )(xy . 
 
If y is just a random variable, then the residual yε  is merely an observation error 
in y, while )(xF  predicts the expected value )(E y  of y for the given x. The 

yε

y

x0

))(,( xFx

),( yx

)()(E xFy =

)(E y

Trendline
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argument x  in )(xF  is assumed to be a constant variable, otherwise orthogonal 
linear regression should be performed (Chapter 6.1.3). 
 
It is convenient to introduce notation for averages in x and y: 

 ,)(1   ,)(1

11
∑∑
==

==
N

i

N

i

iy
N

yix
N

x  (6.4)  

and for average residual 

 ).(]))(()([1)(1

11

xbayixFiy
N

i
N

N

i

N

i
yy +−=−== ∑∑

==

εε   (6.5) 

The sample variance in residual 

   2))((
1

1 222

1

22
xxyy

N

i

sbbssi
N

s +−=−
−

= ∑
=

εεε , (6.6)  

where xs  and ys  (4.72) are sample variances in x and y, while xys  (4.52) is their 
covariance. 
 
Two unknown constant coefficients a and b can be determined by the conditions 
 0=ε ,   0/2 =∂∂ bsε , (6.7)  
that minimises both: the magnitude of average residual ( 0||min =ε ) and the 

empirical variance 2
εs . These two conditions give 

 xbya −=    and   2/ xxy ssb = . (6.8)  

The final form of the regression model 

 2/ )()( xxy ssxxyxF −+= . (6.9) 

Therefore, a trendline in the simple linear regression is the straight line passing 
through the point ( yx, ) with the slope 2/ xxy ss .  
 
The minimal sample variance in residual for given b has a value 

 )1)(1()/)(/(min rrssssssss yxxyyxxyy +−=+−=ε , (6.10) 

where yxxy sssr /=  (4.88) is the sample coefficient of regression. 
 
Simple linear regression is illustrated with Example 6.1. The practical application 
is supported by Algorithm 6.1. 
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Example 6.1. Simple linear regression.  
Simple linear regression is performed using data in Tab. 6.1. Results are 
illustrated by diagrams in Fig. 6.2. 

 
Tab. 6.1. Data for linear regression (example)   

   i 1 2 3 4 5 6 7 
 x(i)   0,1   0,2   0,4   0,5   0,6   0,8   0,95 
 y(i)   1,115   1,115   1,38   1,6   1,5   1,82   1,93 

 
Average values and variances are 

 
286. 214 0,095   238, 320 0,101   476, 690 0,093

714,2851,494  857,142 0,507
22 ===

==

xyyx sss

yx
 (6.11)  

Constants  

 .9789,0   ,0163,1/ 2 =−=== xbyassb xxy  (6.12)  

The regression model (trendline) is determined by the function  
 xxF 0163,19789,0)( += . (6.13)  
The squared correlation coefficient 955,0)/( 2222 == yxxy sssr  (Chapter 4.2.7).  

1

1,2

1,4

1,6

1,8

2

0 0,2 0,4 0,6 0,8 1x

 y  

Trendline

Limits for confidence level 99%

 
Fig. 6.2. Example of simple linear regression 

Sample variance and standard deviation in residual are 

 00456,0 2 2222 =+−= xxyy sbbsssε    and   0,0675=εs .  (6.14)  
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Uncertainties in residual NstMy /εαε =Δ  (5.22) for several confidence 
levels (Chapter 5.3), 7=N  and 1−= NM  are given in Tab. 6.2.  
 
Tab. 6.2. Uncertainties in residual (example) 

1−α 50% 70% 90% 95% 99% 

tMα 0,718 1,134 1,943 2,447 3,707 

Δεy 0,0183 0,0289 0,0495 0,0624 0,0945 
  

 

Algorithm 6.1. Simple linear regression 

Input data:    )(ix , )(iy , N 
Output data: a, b, r2 

// Averages 
   0== aveyavex  
   for 1=i  to N  
      )(ixavexavex +=  
      )(iyaveyavey +=  
   endfor 
   Navexavex /=  
   Naveyavey /=   

// Sample variances and covariance 
   022 === sxysysx  
   for 1=i  to N  
      2))((22 avexixsxsx −+=  
      2))((22 aveyiysysy −+=  
      ))()()(( aveyiyavexixsxysxy −−+=  
   endfor 
   )1/(22 −= Nsxsx  
   )1/(22 −= Nsysy  
   )1/( −= Nsxysxy  

// Coefficients 
   2/ sxsxyb = ,   avexbaveya ⋅−=  
   )22/(2 sysxsxysxyr ⋅⋅=  
end 
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// 2/ xxy ssb =  
// xbya −=  
// 2222 / yxxy sssr =  
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