INDEX OF ALGORITHMS

Algorithm		
1.1	Newton's root-finding method	25
1.2	Halley's root-finding method	27
1.3	Householder's root-finding method of the 3 rd order	30
1.4	Secant root-finding method with maximal accuracy	33
1.5	Müller's root-finding method with prescribed accuracy	38
1.6	Inverse quadratic interpolation with maximal accuracy	41
1.7	Modified secant method with maximal accuracy	44
1.8	Bisection root-finding method with prescribed absolute accuracy	49
1.9	Bisection root-finding method with a prescribed relative accuracy	50
1.10	Dekker's root-finding method with absolute accuracy	53
1.11	Brent's root-finding method	56
1.12	False position method	59
1.13	Ridder's root-finding method	62
1.14	Modified false position method	64
1.15	Illinois algorithm with simple improvements	68
1.16	Newton-Raphson division	73
1.17	Finding a square root with the Babylonian/Heron method	75
1.18	Finding a square root with the optimised Babylonian/Heron method	77
2.1	Gaussian elimination	110
2.2	Gaussian elimination with row pivoting	116
2.3	Calculating the determinant with Gaussian elimination	124
2.4	Crout reduction	132
2.5	Crout LU decomposition	143
2.6	Solving a linear equation system $LUX = b$	145

2.7	Cholesky–Banachiewicz decomposition	150
2.8	Cholesky–Crout decomposition	150
3.1	SEM without pivoting	176
3.2	SEM subroutine in ANSI FORTRAN	177
3.3	SEM functions in ANSI C	180
3.4	Main program in ANSI FORTRAN	186
3.5	Main function in ANSI C	187
3.6	SEM with row pivoting	201
3.7	SEM with row pivoting in ANSI FORTRAN	203
3.8	SEM with row pivoting in ANSI C	206
3.9	Determinant with SEM and row pivoting	209
4.1	Allocating memory and initialising global variables	227
4.2	Locating an index in the list	228
4.3	Adding an index to the list	229
4.4	Removing an index from the list	230
4.5	Changing the negative index to the positive index	231
4.6	Removing the column and the row (two functions)	234
4.7	Finding row/column of the variable x_i	236
4.8	Finding row/column for variables z_i/y_i	238
4.9	Getting row and column (two functions)	239
4.10	The first phase, adding equation coefficients	240
4.11	The second phase, elimination (two functions)	242
4.12	Closing equation	243
4.13	Removing equation	244
4.14	Preparing the solution	245
4.15	Setting known variable	246
4.16	Getting unknown variable	247

INDEX OF EXAMPLES

Example		
	Some mathematical symbols	12
1.1	Finding a square root with Babylonian/Heron method	15
1.2	Application of fixed-point iteration to the function	21
1.3	Application of Newton's method to the polynomial equation	24
1.4	Application of Halley's method to the polynomial equation	27
1.5	Application of the 3 rd order Householder's method to the polynomial equation	29
1.6	Application of the secant method to the polynomial equation	32
1.7	Divergence of the secant method	34
1.8	Finding a square root with the optimised Babylonian/Heron method	77
1.9	Finding a square root with Halley's method	79
1.10	Square root found with the 3 rd order Householder's method	80
1.11	Cubic root finding with Halley's method	83
1.12	Null-lines of the function of two arguments	84
1.13	The real solution of the equation system	85
1.14	Equation system without a real solution	86
1.15	Multidimensional Newton's method	90
2.1	Application of rules for finding solution of a linear equation system	96
2.2	Finding an inverse matrix	98
2.3	Finding a solution from the inverted matrix	99
2.4	Laplace's expansion rules	102
2.5	Calculation of a determinant by manipulations with rows	103
2.6	Calculation of eigenvalues	104

2.7	Crammer's rule	105
2.8	Gaussian elimination	108
2.9	Gaussian elimination with row pivoting	114
2.10	Calculating the determinant with Gaussian elimination	123
2.11	LU decomposition of a 3×3 matrix	141
2.12	Crout LU decomposition of a 3×3 matrix	142
2.13	Solving a linear equation system with LU decomposition	144
2.14	Matrix inversion with LU decomposition	147
2.15	LU decomposition of a 3×3 symmetric, positive-definite matrix with real coefficients	149
2.16	LDL^{T} decomposition of a 3×3 matrix	152
3.1	SEM without pivoting	161
3.2	SEM without pivoting applied to a linear equation system of five equations	171
3.3	Memory utilisation	175
3.4	SEM with pivoting	195
4.1	Memory requirements	220

INDEX

В	f L
Babylonian/Heron method, 74	least squares, 153
back substitution, 220	LU decomposition, 141
bisection method, 47	M
Brent's method, 55	matrix inversion, 118, 127, 140, 146
C	Müller's method, 36
Cholesky decomposition, 148	N
Crammer's rule, 104	Newton's method, 22, 82
Crout reduction, 129	- multidimensional, 88
- Crout LU decomposition, 142	Newton-Raphson
D	- division, 69
Dekker's method, 51	- inverse square-root, 81
determinant, 100, 121, 209	numerical operations, 170
E	P
eigenvalues, eigenvectors, 103	pivoting, 111, 247
F	- row pivoting, 112, 189
false position method, 57	R
- Modified false position method, 63	Ridder's method, 60
fixed point iteration, 21	required memory, 171, 219
- multidimensional, 87	S
G	secant method, 30
Gaussian elimination, 105	- modified secant method, 42
Gauss-Jordan elimination, 125	sequential substitution (SS), 133
Gauss-Newton method, 91	sequential elimination method
Gauss-Seidel method, 155	(SEM), 157
Н	sparing a computer memory, 138
Halley's method, 25, 78, 81, 83	square-root methods, 74
Householder's method, 28, 80, 82	- Babylonian/Heron method, 74
I	- Halley's method, 78
Illinois algorithm, 65	- Householder's method, 80
improved sequential substitution	- inverse square-root method, 81
(ISS), 211	- Newton-Rapson method, 81
inverse matrix, 97	- Halley's method, 81
inverse quadratic interpolation, 39	- Householder's method, 82
inverse square-root methods, 81	Steffensen's method, 35
J	
Jacobi method, 154	

REFERENCES

- [1] Chapra, S.C., Canale, R.P., *Numerical Methods for Engineers*, McGraw-Hill, New York 2010., ISBN 978-007-126759-5
- [2] Scavo, T.R., Thoo, J.B., *On the geometry of Halley's method*, American Mathematical Monthly, 102:5 (1995), pp. 417–426.
- [3] Johnson, L.W., Scholz, D. R., *On Steffensen's Method*, SIAM Journal on Numerical Analysis (June 1968), vol. 5, no. 2., pp. 296–302.
- [4] Muller, D.E., A Method for Solving Algebraic Equations Using an Automatic Computer, MTAC, 10 (1956), 208-215.
- [5] Dahlquist, G., Björck, A., *Numerical Methods*, Dover publications, 2003., ISBN 0-486-42807-9.
- [6] Dekker, T.J., Finding a zero by means of successive linear interpolation, Constructive Aspects of the Fundamental Theorem of Algebra, Wiley-Interscience, London, 1969., ISBN 471-28300-9.
- [7] Bus, J.C.P, Deker, T.J., Two efficient algorithms with guaranteed convergence for Finding a Zero of Function, ACM Trans. Math. Software, v.1, no.4, 1975, pp 330-345.
- [8] Brent, R.P., *Algorithms for Minimization without Derivatives*, *Chapter 4*., Prentice-Hall, Englewood Cliffs, NJ., 1973., ISBN 0-13-022335-2.
- [9] ***, Numerical Recipes in C: The Art of Scientific Computing, Cambridge university press, 1992., ISBN 0-521-43108-5.
- [10] Ridder, C.J.F., *Three-point iterations derived from exponential curve fitting*, IEEE Transactions on Circuits and Systems, vol. CAS-26, pp. 979-980., 1979.
- [11] Kiusalaas, J., *Numerical Methods in Engineering with Pithon*, Cambridge University Press, Cambridge, 2010., ISBN 978-0-521-19132-6
- [12] Bronshtein, I.N, Semendyayev, K.A., Musiol, G., Muehlig, H., *Handbook of mathematics*, Springer-Verlag Berlin Heidelberg New York, 2004., ISBN 3-540-43491-7.
- [13] Obsieger, B., Universal Procedure for Direct Solving of Non-homogeneous Linear Equation system (Univerzalna procedura direktnog rješavanja nehomogenog sistema linearnih jednadžbi), Proceedings of V Scientific meeting on Computation and CAD (PPPR), Stubičke Toplice, Croatia, November 1983.
- [14] Obsieger, B., *Comparison of SEM Algorithm and Gaussian Elimination*, International journal Advanced Engineering 4(2010)2, ISSN 1846-5900.
- [15] Obsieger, B., *Numerical Methods I, Basis and Fundamentals*, Faculty of Engineering in Rijeka, Rijeka, 2012.

References 255

[16] Hildebrand, F.B., *Introduction to Numerical Analysis*, Dover Publications, New York 1987, ISBN 0-486-65363-3.

- [17] Obsieger, B., Direct Procedure for Solving Non-homogenous Linear Equation system with Automatic Minimisation of Required Computer Memory, (Direktan postupak rješavanja nehomogenog sistema linearnih jednadžbi s automatskom minimizacijom memorije računala), Symposium on Design, Zagreb 1984, C2-II.
- [18] Obsieger, B., The Computer program for Solving Non-homogeneous Linear Equation system by the Universal Direct Elimination Procedure (Univerzalni program za direktno rješavanje nehomogenog sistema linearnih jednadžbi), Symposium of Design, Zagreb, June 1984., Proceedings Paper C2-III.
- [19] Obsieger, B., Optimisation of Bearings with Hidrostatic Lubrication, (Optimizacija ležajeva s hidrostatskim podmazivanjem), Symposium on Design, Zagreb 1984.
- [20] Press, W.H., Teukolsky S.A., Vetterling, T.W., Flannery B.P., *Numerical Recipes in C: The Art of Scientific Computing (second edition)*, Cambridge University Press. 1992., ISBN 0-521-43108-5.
- [21] Bau, D., Lloyd T.,N., *Numerical linear algebra*, Philadelphia: Society for Industrial and Applied Mathematics, 1997., ISBN 978-0-89871-361-9.
- [22] Obsieger, B., *Boundary elements method II (Metoda rubnih elemenata II)*, ISBN 953-98862-9-5, Zigo Rijeka, 2003.
- [23] Obsieger, B., Succesive Elimination Method Optimised for Linear Equation system with Populated Matrix, 2nd International conference CADAM 2004, Book of Selected papers, Obsieger, B. (Ed.), Zadar Croatia, Zigo Rijeka, 2004.
- [24] Obsieger, B., *Procedure for Solving Progression of Non-Homogenous Linear Equation systems*, Collected papers 14(1994), ISSN 0353-281X, Faculty aof Engineering, Rijeka 1994, 51-62.
- [25] Obsieger, B., The universal elimination procedure for solving systems of linear equations generated with the finite element method, VI International Symposium PPPR'84, Paper A4.04, Zagreb, Croatia, 1984.

Publishing Platform

Create Space CS201505

Information about this textbook and how to buy it in Australia, Brazil, Canada, Europe, Russia, USA and other countries can be found at university-books.eu.