

ISBN 978-953-7919-26-9
In ccoolloouurr by Ingram Digital

Boris Obsieger

NUMERICAL METHODS II

Roots and Equation Systems

Including SEM and ISS algorithms

GAUSS SEMStored in memory Stored in memory

1 c12 c13 c14 c15 c1

0

0

0

0

1

0

0

0

c23

1

0

0

c24

c34

c44

c54

c25

c35

c45

c55

c2

c3

c4

c5

Will be added one by one

c14 c15 c1

0

0

a41

a51

1 0

0

a42

a52

1

0

0

1

a43

a53

c24

c34

a44

a54

c25

c35

a45

a55

c2

c3

b4

b5

 13

1. ROOT-FINDING METHODS

Motivation for developing various root-finding methods arises from the
requirement to approximate the roots of different functions with wanted accuracy
by using as few numerical operations as possible.

The roots of a function)(xf , also called the zeros of a function, are points on
the abscissa where this function has the zero value, i.e. where 0)(=xf . To find
a particular root, it is required to know

- the first approximation of the root, hopefully close to the root (Fig. 1.1a), or
- ideally, points that bracket the root (Fig. 1.1b).

Fig. 1.1. Basic requirements: a – first approximation,

b – points that bracket the root

In an interval close to the root and to its first approximation 0x , or in the interval

],[ba that brackets the root, a function needs to be well-behaved1.

1 The term „well-behaved“ has no fixed formal definition, and it depends on the subject.

0x

)(xf

x
0

root

a

)(xf

x
0

b

a b

0)(>bf

0)(<af

root

14 Numerical Methods II – Roots and Equation Systems

Functions that are not well-behaved in an interval of interest have, for example,

- singularity (Fig. 1.2a),
- an infinite number of roots (e.g.)/1sin(x , Fig. 1.2b) , or
- an extreme at the root (very difficult to find, Fig. 1.2c).

Fig. 1.2. Functions with: a – singularity, b – infinite number

of roots, c – extreme at the root

During the history various root-finding methods have been developed. The oldest
one is probably the Babylonian method that was used in Mesopotamia about
1800 BC. That has been the most efficient iterative method1 for finding the
square root known until today.

The ancient Babylonians had a nice method of computing square roots by using
only simple arithmetic operations. For example, let the rational approximation for
the square root of the number a begin with an initial estimate 0x . If the kth
estimate kx is lesser than a , then kxa / is greater than a , or, vice versa, if

kx is greater than a , then kxa / is less than a . It follows that the average of
these two numbers, kx and kxa / , gives a better estimate

2

/
1

kk
k

xaxx +=+ . (1.1)

This formula2 is sometimes attributed to Heron of Alexandria (about 10-70 AC)
because he described it in his Metrica, but it was undoubtedly known to the
Babylonians much earlier. For that reason, in this book the method is referred to
as the Babylonian/Heron method.

1 The iteration means 1. the act of repeating, a repetition; 2. (Mathematic) a problem-solving
or computational method in which a succession of approximations, each building on the
one preceding, is used to achieve desired degree of accuracy, or 3. an instance of the use
of this method; 4. (Computers) a repetition of a statement or statements in a program.
2 The same formula is developed in Chapter 1.5.1, by specialisation of Newton’s method.

)(xf

x
0

a

)(xf

x0

b

)(xf

x
0

c

1. Root Finding Methods 15

The approximation kx converges very rapidly to the square root of a, as shown
in Example 1.1. When the approximation is close to the solution, the number of
accurate digits doubles with each iteration. Such convergence is called the
quadratic convergence.

Example 1.1. Finding a square root with the Babylonian/Heron method.

Successive approximations in finding the square root of 2=a with the
Babylonian/Heron, starting with ax =1 as the first estimate, are listed in Tab.
1.1. The recursion (1.1) is used.

Tab. 1.1. Successive approximations of the square root of 2=a

k xk
Accuracy

digits
0 2,000 000 000 000 000 000 000 000 000 000
1 1,500 000 000 000 000 000 000 000 000 000 1,5
2 1,416 666 666 666 666 666 666 666 666 667 3
3 1,414 215 686 274 509 803 921 568 627 451 6
4 1,414 213 562 374 689 910 626 295 578 890 12
5 1,414 213 562 373 095 048 801 689 623 503 24
6 1,414 213 562 373 095 048 801 688 724 210 (48)

The number of accurate digits was doubled with the each iteration so that the
method manifests the quadratic convergence.

1.1 CLASSIFICATION OF ROOT-FINDING METHODS

The root-finding methods can be classified either as

• General root-finding methods, or
• Specialised (problem specific) root-finding methods.

General root-finding methods are iterative (use recursive formulas or/and
recursive algorithms). Efficiency, applicability and reliability of a particular
general root-finding method depend on a function, the roots of which are to be
found. For that reason, it is not possible to proclaim the best one.

16 Numerical Methods II – Roots and Equation Systems

General root-finding methods can be classified as

• Open root-finding methods,
• Bracketing root-finding methods or
• Multi-dimensional root-finding methods.

The open root-finding methods have not a predefined initial interval that brackets
the root (Fig. 1.1a). Unlike the open methods, the bracketing methods are
characterised by the initial interval containing the root (Fig. 1.1b). In each
iteration, the interval is divided into two smaller intervals. The one that contains
the root is used in the next iteration.

Unlike the general root-finding methods, which are all iterative, the specialised
root-finding methods can be either direct or iterative. Specialised iterative
methods are usually developed by specialisation of general root finding methods.
However, any problem can be solved by several methods, but the efficiency and
reliability of the particular specialised method must be separately found out.

The best-known root-finding methods described in this chapter are:

 OPEN ROOT-FINDING METHODS (CHAPTER 1.2)

1. Fixed point iteration, repetitive approximation of the root of a function
xxg =)(, by using the recursion formula)(1 nn xgx =+ , which is

expected to converge to the root.

2. Newton’s method, also known as the Newton-Rapson method, consists in
successive approximation of the root by using the tangent of a function to
find the next approximation. The method is reliable and fast with
quadratic convergence if applied to the single root of a continuous
function that does not change the sign of the first derivative in the
interval between the first estimate and the exact root.

3. Halley’s method, is similar to Newton’s method, but it uses the first two
derivatives of a function. The convergence is cubic, but each iteration
requires computing a function as well as its first and second derivatives.

4. Householder's methods, the class of root-finding algorithms using
derivatives up to order 1+d . If 1=d , the method is equal to Newton’s
method, whereas if 2=d , the method is equal to Halley’s method. The
rate of convergence is 1+d .

1. Root Finding Methods 17

5. Secant method is similar to Newton’s method, but it uses the secant
through the last two computed points instead of the tangent in the single
point. The convergence is superlinear (with order 1,62).

6. Steffensen's method is similar to Newton’s method. It also achieves
quadratic convergence, but it does not use the derivative. Instead of the
first derivative, a slope function is used. The main advantage of
Steffensen's method is that it has quadratic convergence like Newton's
method, but does not require any development of the derivative.

7. Müller's method, also known as the Müller-Traub method, uses the last
three points to determine the coefficients of the parabola baxy += 2 ,
and takes the intersection of the parabola and the x-axis to be the next
approximation. The order of convergence is approximately 1,84.

8. Inverse quadratic interpolation constructs an “inverse” parabola through
the last three points. Instead of finding the coefficients of the related
quadratic equation bafx += 2 , the method uses inverse quadratic
interpolation to find the next approximation of the root.

9. Modified secant method uses the last three points to construct a rational
function and takes the intersection of its graph and the x-axis as the next
approximation of the root.

 BRACKETING ROOT-FINDING METHODS (CHAPTER 1.3)

10. Bisection method, repetitive bisection of the interval containing the root,
is the most robust and reliable root-finding method with predictable
number of numerical operations, applicable to any continuous function
when the minimisation of numerical operations is not a main priority.

11. Dekker’s method is a combination of the bisection method and the linear
interpolation or extrapolation. The bisection provides reliability, while
the interpolation increases the speed.

12. Brent’s method is a complex root-finding algorithm that combines the
bisection method with the inverse quadratic interpolation. It has not only
the reliability of the bisection method but it can be also as quick as some
less reliable methods.

13. False position method, also known as Regula falsi method, consists in
repetitive splitting the interval containing the root by using linear
interpolation on the actual interval. In comparison with the bisection
method, in some cases it is faster, but in some cases it is slower and not
so reliable and predictable. The used iteration formula is formally equal

18 Numerical Methods II – Roots and Equation Systems

to those used in the secant method, but with different rules for retaining
the two points for the next iteration.

14. Ridder’s method is a modification of the false position method based on
the use of exponential function instead of linear interpolation. This
method is extraordinary robust like the bisection method. The rate of
convergence is 1,41 per each function evaluation.

15. Modified false-position method uses three points to construct a rational
function at each iteration, and takes the intersection of its graph and the
x-axis to be the next approximation.

16. Illinois algorithm is the improved “modified false position method” that
prevents the retention of the old points. This is done by determining the
optimal downscaling coefficient. The algorithm is simple and reliable
with the rate of convergence 1,44 per each function evaluation.

 SPECIALISED ITERATIVE METHODS (CHAPTERS 1.4 TO 1.7)

17. Newton-Raphson division is the application of Newton’s method to the
division (Chapter 1.4).

18. Square-root methods (Chapter 1.5)

a. The Babylonian/Heron method, the oldest and possibly the most
efficient iterative method for finding the square root of a real
number. It can be developed from Newton’s recursion formula.

b. Methods based on Halley’s and Householder’s recursion
formulas.

19. Inverse square-root methods (Chapter 1.6), the methods for computing
the inverse of the square-root based on Newton’s, Halley’s and
Householder’s recursion formulas.

20. N-th root algorithms (Chapter 1.7), the methods for computing nth root
based on Newton’s and Halley’s iteration formulas.

 MULTI-DIMENSIONAL ROOT-FINDING METHODS (CHAPTER 1.8)

21. Multi-dimensional fixed point iteration; the generalisation of the one-
-dimensional fixed point iteration.

22. Multi-dimensional Newton’s method, the generalisation of the one-
dimensional Newton’s method.

23. The Gauss-Newton method combines Newton’s iteration formula and the
Gaussian method of least squares.

1. Root Finding Methods 19

1.2 OPEN ROOT-FINDING METHODS

The open root-finding methods are iterative methods. With the exception of the
fixed-point iteration, the common property of open methods is that the next guess
of the root is computed by extrapolation. The extrapolation can be linear or
higher order, depending on the number of sampling points in which a function
and possibly its derivatives are calculated (Tab. 1.2).

Tab. 1.2. Open methods classified by order of extrapolation

Extrapolation Points Derivatives Method Chapter

- 1 (none) Fixed-point 1.2.1

Linear

1)(xf ′ Newton’s 1.2.2

2 (none)
Secant 1.2.5

Steffenson’s 1.2.6

Quadratic

1)(xf ′ ,)(xf ′′ Halley’s 1.2.3

3 (none)
Müller's 1.2.7

Inverse
quadratic 1.2.8

Cubic 1)(xf ′ ,)(xf ′′ ,)(xf ′′′ Householder’s
3rd order

1.2.4
High order 1)(xf ′ …)()(xf n Householder’s

nth order
Rational
function 3 (none) Modified

secant 1.2.9

Open methods have some advantages and disadvantages (Tab. 1.3). Their
common disadvantage is that the first guess must be sufficiently close to the root.
As the first guess is closer to the root, the convergence will be faster. But even
then, the convergence is not always guaranteed. The possibility that the particular
method will fail usually depends not only on the choice of the first guess, but also
on functions and the multiplicity of their roots. However, in some cases, as in the
case of the Babylonian method (Chapter 1.5.1), which can be derived by a
specialisation of Newton’s method, the convergence is always guaranteed.

20 Numerical Methods II – Roots and Equation Systems

Tab. 1.3. Main advantages and disadvantages of the open root-finding methods

Main advantages Main disadvantages

1. Fixed point iteration CHAPTER 1.2.1

The simplest method. If convergence exists, it can be slow.

2. Newton’s method CHAPTER 1.2.2

Reliable and fast method with the
quadratic convergence.

The first derivative of a function must
be developed.

3. Halley’s method CHAPTER 1.2.3

Reliable and fast method with the
cubic convergence.

The first and second derivative of a
function must be developed.

4. Householder's methods CHAPTER 1.2.4

Reliable and fast methods with the
convergence order 1+d .

The first d derivatives of a function
must be developed.

5. The Secant method CHAPTER 1.2.5

Doesn’t require the first derivative.
Superlinear convergence (order 1,62).

Requires two points to define secant.
Slower convergence.

6. Steffensen's method CHAPTER 1.2.6

Doesn’t require the first derivative.
Quadratic convergence.

Double function evaluation in each
iteration.

7. Müller's method CHAPTER 1.2.7

Doesn’t require derivatives.
The order of convergence is 1,84.

Computes three points to define the
interpolation parabola.

8. Inverse quadratic interpolation CHAPTER 1.2.8

Doesn’t require derivatives. Requires three points for inverse
interpolation with the parabola.

9. Modified secant method CHAPTER 1.2.9

Doesn’t require derivatives. Requires three points for the
extrapolation with rational function.

1. Root Finding Methods 21

1.2.1 Fixed point iteration
The fixed point iteration is probably the simplest root finding method [1]. It
consists in repetitive approximation for a root of a function)(xf by using the
recursion formula
)(1 kk xgx =+ , (1.3)

where auxiliary function
 xxfxg +=)()(. (1.2)

Two examples of fixed point iteration are given in Fig. 1.3. The root is
determined by an intersection of the curve)(xgy = and the line xy = . The
example a illustrates a convergence, while the example b illustrates a divergence.

Fig. 1.3. Fixed point iteration, a – convergent, b – divergent

The main disadvantage of the method is that the convergence is not always
guaranteed. It will be guaranteed only if 1|)(| <′ kxg .

Example 1.2. Application of fixed-point iteration to the function
 4,2ln)(−+= xxxf . (1.4)
The iteration formula is
 kk xx ln4,21 −=+ . (1.5)

Starting with 20 =x , the values in Tab. 1.4 are obtained. In the given
example, the iteration is very slow although the first guess is close to the root.
The calculated values oscillate around the true value. The accuracy of 10
digits is obtained after 34 steps – that is roughly one bit per step.

x

y

0
0x 1x2x 3x4x

xy =

x

y

0
0x1x3x

xy =

2x

)(xgy =)(xgy =

a b

22 Numerical Methods II – Roots and Equation Systems

Tab. 1.4. Application of fixed-point iteration to the function (1.4)

k xk k xk k xk

0 2,000 000 000 00 7 1,804 911 890 15 14 1,807 904 231 22
1 1,706 852 819 44 8 1,809 488 223 73 15 1,807 831 708 89
2 1,865 348 781 67 9 1,806 955 944 02 16 1,807 871 823 73
3 1,776 551 950 09 10 1,808 356 369 42 17 1,807 849 634 50
4 1,825 325 621 01 11 1,807 581 650 48 18 1,807 861 908 25
5 1,798 241 606 41 12 1,808 010 152 82 19 1,807 855 119 13
6 1,813 190 697 89 13 1,807 773 122 55 1,807 857 537

1.2.2 Newton’s method

Newton’s method1 is often referred to as one of the best-known methods for
successively finding better approximations to the roots of real functions. The
algorithm is the first in the class of Householder’s methods (Chapter 1.2.4). It
often converges quickly, especially if the first iteration begins sufficiently near
the root. Unfortunately, when the first iteration begins far from the root,
Newton’s method can fail to converge.

Newton’s method requires a successive calculation of a function)(kk xff = and
its first derivative)(kk xff ′=′ at sampling points kx . The first iteration begins
with the calculation of)(00 xff = and)(00 xff ′=′ in an arbitrary initial value

0x , which is reasonably close to the root.

Starting with an initial value 0x , a tangent through the point (0x ,)(0xf) can be
constructed, as it is illustrated in Fig. 1.4. The tangent has the equation

)()()()(000 xfxxxfxy +−′= . (1.6)

The point)0,(1x in which the tangent intersects the x-axis, i.e. such a value 1x
that 0)(1 =xy , can be found by solving the following equation for 1x :

 0)()()(0010 =+−′ xfxxxf . (1.7)

1 Newton’s method is also known as the Newton-Rapson method, named after Isac
Newton and Joseph Rapson

 157

3. SEQUENTIAL ELIMINATION METHOD

The sequential elimination method (SEM) is the simple direct method for solving
the linear equation system that uses much less computer memory than Gaussian
elimination without increasing the number of numerical operations [22,14].
Moreover, a size of utilised memory gradually changes, from zero to maximum
and back to zero. As a result, when Gaussian elimination forces the operating
system to swap data between the fast physical and the slow virtual memory1, the
SEM algorithm can run most of the time (or even all the time) using only fast
physical memory, i.e. without data swaps. Omitting data swaps is manifested in
remarkable speedup of the SEM algorithm. The presented algorithm is optimized
for solving regular linear equation system whose matrix is fully populated2.

1 Computer has fast (but expensive) central memory and slow (but cheap) peripheral
memory. Central memory is virtually extended to the part of peripheral memory; thus it is
talking about physical (but fast) part and virtual (but slow) part of central memory, or just
about physical and virtual memory. The actually non-processing data in physical memory
are swapped with the actually required data that has been previously swapped into virtual
memory. Data swaps are performed automatically by the operating system whenever
physical memory is overloaded.
2 Historically, SEM [22] arises through specialisation of a much older general method
(1983. [13]), which can be efficiently used for solving linear equation systems as well as
series of linear equation systems, either with populated or sparse system matrices [17, 23,
24]. If the matrix is sparse, there is no need to compute a complete solution. This
provides remarkable reductions of utilised memory size and numerical operations.
Moreover, number of numerical operations can be drastically reduced in solving series of
linear equation systems, in which the particular system is a modification of the previous
one [17, 18, 24]. The improved version of this general method is described in Chapter 4.

158 Numerical Methods II – Roots and Equation Systems

In the standard Gaussian elimination (Algorithm 2.1), the coefficients of
equations are all stored in computer memory before the calculation begins. This
strategy avoids minimisation of the required memory size. In the SEM, the
coefficients of each equation are used for elimination immediately after the
equation is entered, and there is no further need to keep them in computer
memory [13,22]. The memory stores only the auxiliary coefficients of
intermediate linear equation system defined by previously added equations. For
that reason, the size of utilised memory gradually changes from zero to
maximum and back to zero, and it is always remarkable less than that required
for the Gaussian elimination method.

Sequential strategy
The principle of sequential strategy used in SEM, can be illustrated on the
summation of N numbers (Fig. 3.1). Numbers can be first stored in memory and
then summed (typical summation), or it can be done in steps, where each step
consists in entering the number and adding it to the sum (sequential summation).

Fig. 3.1. Summation of N numbers3

3 In all flowcharts it is assumed that unspecified increment in loops is +1. Therefore,

Ni to1= means Ni ..., ,2 ,1= . In addition, loop bai to= will not be executed if ba > ,
except if “step −1” is specified. For example, if 1=k , the loop 1 to1 −= kr will be
skipped.

STOP

Output sum

asumsum +=

k

Sequential
summation

Nk to1for =

0=sum

)(kfa =

STOP

Typical
summation

Nk to1for =

Nk to1for =

0=sum

)(ifak =

k

Output sum

kasumsum +=

k

3. Sequential Elimination Method 175

Example 3.3. Memory utilisation.

The equation system with 000 10=N equations has a matrix with

810)1(≈+NN coefficients. If this system is solved by using Gaussian
elimination, then the whole matrix is set before elimination. Assuming that
one extended double precision FPN occupies 10 bytes, the matrix of the
equation system will occupy almost 1 Gb of memory12 (Fig. 3.6).

Fig. 3.6. Occupied memory in relation to number of actually
entered equations for 000 10=N

To solve the system of 000 10=N equations, the SEM initially occupies

kb 98 for storing 001 101=+N coefficients of the first equation. The
occupied memory gradually rises up to Mb 240≈ when the number of
coefficients reaches its maximum 62 1025)1(4/)1(⋅≈+++ NN . After that,
the occupied memory gradually falls to kb 98 that contains the final solution
(000 10=N coefficients).

12 Precisely Mb 954 (Mb 1024Gb 1 = , kb 1024Mb 1 = , bites 1024kb 1 =).

OS and program OS and program

Data in RAM
Data in RAM

Free virtual
memory

Free virtual
memory

Swapped data

Free RAM

U
se

d
m

em
or

y
(u

p
to

 9
54

 M
b)

V
irt

ua
l m

em
or

y

23
9

M
b

R
A

M

V
irt

ua
l m

em
or

y
R

A
M

Processed equations Executed substitutions
10 000 10 000 0 0

176 Numerical Methods II – Roots and Equation Systems

3.1.5 Programming SEM

A brief description of steps in SEM without pivoting is given in Algorithm 3.1.
The same procedures are then written in the program languages ANSI
FORTRAN and ANSI C (Algorithms 3.2 and 3.3). The use of these programs is
supported by the main programs in the Algorithm 3.4 and 3.5 which can be used
as a prototype for user’s own program. The programs were published in [18, 22].

Algorithm 3.1. SEM without pivoting

// Program can be divided into eight steps
// Step 1
 Allocate memory and set initial values
 0=k // An initial value of the equation counter
// Step 2
A: 1+= kk Increment equation counter (1+= kk)
 Obtain and store coefficients kja of the kth equation
// Step 3
 if 1>k then // intermediate solution of the first 1−k unknowns are known
 // Eliminate unknowns 1x to 1−ix in the kth equation

 ∑
−

=

−=+=∀
1

1

)1 ..., ,(
k

r
rjkrkjkj caaaNkj

 endif
// Step 4 (assuming that 0≠kka)
 kkkjkj aaaNkj /)1,...,1(=++=∀
 // note: it is convenient to delay storing coefficients kja in kjc
// Step 5
 if 1>k then // eliminate unknown kx in the first 1−k equations
 kjikijij acccNkjki −=++=∀−=∀)1 ..., ,1)1 ..., ,1((
 endif
// Step 6 Store kja in kjc
 kjkj acNkj =++=∀)1 ..., ,1(
// Step 7
 if Nk < then goto A; endif //“A” is a label at the beginning of the step 2
 Output results
 Free allocated memory
end

4. Improved Sequential Substitution 241

Fig. 4.13. Second phase, elimination of a - unknown variable xj ,

b - summation variable zi

4.5.6. Closing equation
When a sequence (or all) coefficients of a particular equation are added, then that
equation should be closed by using the function closeeq(i,k). A prototype of this
function is given in Algorithm 4.12. It has two arguments: an index i of the
equation to be closed and a flag k.

If the equation has a form ...=iz (with 0=iy), then the elimination of unknown
variable jx must be done by using the function elimx() (equation ...=iz is transfor-
med into ij yx =). The unknown variable jx that will be eliminated is chosen
either by the implicit rule ij = , or by row pivoting (the function rpivot()). If flag k
is set (0>k), then the equation is closed forever by removing the column under iy .

C
as

e
1,

 E
lim

in
at

io
n

of
 u

nk
no

w
n

va
ria

bl
e

x j

RETURN

c(rowz,colx) = −1.

e = −1./e

p

for all columns p do
eprowzcprowzc ⋅=),(),(

r
p

for all rows rowzr ≠ do

for all columns p do

),(),(),(prowzceprcprc ⋅+=

colx
0≤

e = c(rowz,colx)

|e| 0= ERROR

c(r,colx) =0.
e = c(r,colx)

RETURN

e = −1./e

p

for all columns p do
eprowzcprowzc ⋅=),(),(

r
p

for all rows rowzr ≠ do

for all columns p do

),(),(),(prowzceprcprc ⋅+=

e = 1.+ c(rowz,coly)

|e| 0=

e = c(r,coly)

rowz0≤

coly0≤
RETURN

elimz(rowz,coly) elimx(rowz,colx)

rowz 0≤

ERROR

C
as

e
2,

 E
lim

in
at

io
n

of
 su

m
at

io
n

va
ria

bl
e

z i

 Swap rowz/colx indexes
a b

remrow(rowz)

fàtÇwtÜw ÉÑà|ÉÇ

About author Boris Obsieger, D.Sc., professor at the Universityof Rijeka, Croatia. Head of Section for MachineElements at the Faculty of Engineering in Rijeka.Holds lectures on Machine Elements Design,Robot Elements Design, Numerical Methods inDesign and Boundary Element Method. Severalinvited lectures. President of CADAM Confe-rences. Main editor of international journalAdvanced Engineering. Author of several booksand a lot of scientific papers.

Boris Obsieger
NUMERICAL METHODS II
Roots and Equation Systems

The series of books Numerical Methods iswritten primarily for students at technicaluniversities, but also as a useful handbook forengineers, PhD students and scientists.
This volume introduces the reader into variousroot finding methods and methods for solvinglinear and non-linear equation systems. Possibly,the most important parts of this book aredescriptions of the methods for solving linearequation systems and series of such systemsalong with minimising computation time,minimising required memory and selectivecomputation of only required unknowns.
Practical application is supported by 37 exam-
ples, 51 algorithms (including SEM and ISS) and23 flowcharts. Algorithms are written in pseudo--code, FORTRAN or C that can be immediatelyimplemented for any application.

Printed in ccoolloouurr
ISBN 978-953-6326-67-9
ISBN 978-953-57117-2-8

ISBN 978-953-7919-26-9
Adobe® Digital Editions
by Ingram Digital

eBook in ccoolloouurr

	Front cover
	eBook in English
	Obsieger, NUMERICAL METHODS II
	Author and Reviewers
	About author

	Title Page
	Copyright ©
	Preface
	CONTENTS
	SOME MATHEMATICAL SYMBOLS
	Examples:

	1. ROOT-FINDING METHODS
	1.1 CLASSIFICATION OF ROOT-FINDING METHODS
	List of open root-finding methods
	List of bracketing root-finding methods
	List of specialised iterative methods
	List of multi-dimensional root-finding methods

	1.2 OPEN ROOT-FINDING METHODS
	1.2.1 Fixed point iteration
	1.2.2 Newton’s method
	1.2.3 Halley’s method
	1.2.4 Householder's methods
	1.2.5 Secant method
	1.2.6 Steffensen's method
	1.2.7 Müller's method
	1.2.8 Inverse quadratic interpolation
	1.2.9 Modified secant method

	1.3 BRACKETING ROOT-FINDING METHODS
	1.3.1 Bisection method
	1.3.2 Dekker’s method
	1.3.3 Brent's method
	1.3.4 False position method
	1.3.5 Ridder’s method
	1.3.6 Modified false position method
	1.3.7 Illinois algorithm

	1.4 NEWTON-RAPHSON DIVISION
	1.5 SQUARE-ROOT METHODS
	1.5.1 Babylonian/Heron method
	1.5.2 Square root by Halley’s method
	1.5.3 Square root by the 3rd order Householder's method

	1.6 INVERSE SQUARE-ROOT METHODS
	1.6.1 Inverse square root by Newton’s method
	1.6.2 Inverse square root by Halley’s method
	1.6.3 Inverse square root by the 3rd order Householder’s method

	1.7 Nth ROOT ALGORITHMS
	1.7.1 Nth root by Newton’s method
	1.7.2 Nth root by Halley’s method

	1.8 ROOTS IN MULTIDIMENSIONAL DOMAIN
	1.8.1 Multidimensional fixed-point iteration
	1.8.2 Multidimensional Newton’s method
	1.8.3 Multidimensional Gauss-Newton method

	Examples in Chapter 1.
	Example 1.1. Finding a square root with the Babylonian/Heron method
	Example 1.2. Application of fixed-point iteration to the function
	Example 1.3. Application of Newton’s method to the polynomial equation
	Example 1.4. Application of Halley’s method to the polynomial equation
	Example 1.5. Application of the 3rd order Householder's method to thepolynomial equation
	Example 1.6. Application of the secant method to the polynomial equation
	Example 1.7. Divergence of the secant method
	Example 1.8. Finding a square root with the optimised Babylonian/Heronmethod
	Example 1.9. Finding a square root with Halley’s method
	Example 1.10. Square root found with the 3rd order Householder's method
	Example 1.11. Cubic root finding with Halley’s method
	Example 1.12. Null-lines of the function of two arguments
	Example 1.13. The real solution of the equation system
	Example 1.14. Equation system without a real solution
	Example 1.15. Multidimensional Newton’s method

	Algorithms in Chapter 1.
	Algorithm 1.1. Newton’s root-finding method
	Algorithm 1.2. Halley’s root-finding method
	Algorithm 1.3. Householder’s root-finding method of the 3rd order
	Algorithm 1.4. Secant root-finding method with maximal accuracy
	Algorithm 1.5. Müller’s root-finding method with prescribed accuracy
	Algorithm 1.6. Inverse quadratic interpolation with maximal accuracy
	Algorithm 1.7. Modified secant method with maximal accuracy
	Algorithm 1.8. Bisection root-finding method with prescribed absoluteaccuracy
	Algorithm 1.9. Bisection root-finding method with a prescribed relativeaccuracy
	Algorithm 1.10. Dekker’s root-finding method with absolute accuracy
	Algorithm 1.11. Brent’s root-finding method
	Algorithm 1.12. False position method
	Algorithm 1.13. Ridder’s root-finding method
	Algorithm 1.14. Modified false position method
	Algorithm 1.15. Illinois algorithm with simple improvements
	Algorithm 1.16. Newton-Raphson division
	Algorithm 1.17. Finding a square root with the Babylonian/Heron method
	Algorithm 1.18. Finding a square root with the optimised Babylonian/Heronmethod

	Tables in Chapter 1.
	Tab. 1.1. Successive approximations of the square root of a = 2
	Tab. 1.2. Open methods classified by order of extrapolation
	Tab. 1.3. Main advantages and disadvantages of the open root-finding methods
	Tab. 1.4. Application of fixed-point iteration to the function (1.4)
	Tab. 1.5. Application of Newton’s method to the polynomial equation (1.11)
	Tab. 1.6. Application of Halley’s method to the polynomial equation (1.11)
	Tab. 1.7. Applying Householder’s method to the polynomial equation (1.11)
	Tab. 1.8. Applying the secant method to the polynomial equation (1.11)
	Tab. 1.9. Divergence of the secant method
	Tab. 1.10. Bracketing methods classified by order of interpolation
	Tab. 1.11. Main advantages and disadvantages of the general bracketing root-finding methods
	Tab. 1.12. Successive approximations of the square root of a = 2
	Tab. 1.13. Successive approximations of the square root of a = 2
	Tab. 1.14. Successive approximations of the square root of a = 2
	Tab. 1.15. Successive approximations of the square root of a = 2
	Tab. 1.16. Successive approximations of the cubic root of a = 2

	Figures in Chapter 1.
	Fig. 1.1. Basic requirements
	Fig. 1.2. Functions with ...
	Fig. 1.3. Fixed point iteration
	Fig. 1.4. Newton’s method
	Fig. 1.5. Secant method
	Fig. 1.6. Millers’s method
	Fig. 1.7. Müllers’s method – complex root of parabola
	Fig. 1.8. Inverse quadratic interpolation
	Fig. 1.9. Bisection method
	Fig. 1.10. Dekker’s method
	Fig. 1.11. False position method
	Fig. 1.12. Ridder’s method
	Fig. 1.13. Selection of the new interval
	Fig. 1.14. Illinois algorithm
	Fig. 1.15. Error for positive significand
	Fig. 1.16. Error for negative divisor
	Fig. 1.17. Example of null-lines
	Fig. 1.18. The real solution of equation system
	Fig. 1.19. Equation system without real solution

	2. LINEAR EQUATION SYSTEMS
	2.1 BASIC DEFINITIONS AND RULES
	2.1.1 Solution of a linear equation system
	Rule 2.1. Solution of a linear equation system
	List of direct methods
	List of iterative methods

	2.1.2 Inverse matrix
	2.1.3 Determinant
	Rule 2.2. Neutral operations on determinants
	Rule 2.3. Changing the sign of a determinant
	Rule 2.4. Zero value of a determinant
	Multiplication of a determinant by a number
	Product of two determinants
	Subdeterminant
	Expansion of a determinant

	2.1.4 Eigenvalues and eigenvectors

	2.2 CRAMMER’S RULE
	2.3 GAUSSIAN ELIMINATION
	2.3.1 Gaussian elimination without pivoting
	Occupied computer memory
	Numerical operations in Gaussian elimination

	2.3.2 Pivoting
	Column pivoting
	Row pivoting

	2.3.3 Gaussian elimination with row pivoting
	2.3.4 Matrix inversion with Gaussian elimination
	Numerical operations in the matrix inversion with Gaussian elimination

	2.3.5 Determinant by Gaussian elimination

	2.4 GAUSS-JORDAN ELIMINATION
	The number of numerical operations in Gauss-Jordan elimination
	2.4.1 Matrix inversion with Gauss-Jordan elimination
	The number of numerical operations in Gauss-Jordan matrix inversion

	2.5 CROUT REDUCTION
	2.6 SEQUENTIAL SUBSTITUTION
	2.6.1 Simple procedure
	2.6.2 Two-phase procedure
	2.6.3 Sparing a computer memory
	2.6.4 Matrix inversion
	2.6.5 Additionality1 and reversibility
	2.6.6 Application

	2.7 LU DECOMPOSITION
	2.7.1 Crout LU decomposition
	2.7.2 Solving linear equation systems with LU decomposition
	2.7.3 Matrix inversion with LU decomposition
	2.7.4 Cholesky decomposition
	Efficiency of Cholesky decomposition
	Solving linear equation system with Cholesky decomposition
	Avoiding calculation of square roots
	Solving linear equation system

	2.8 LEAST SQUARES
	2.9 ITERATIVE METHODS
	2.9.1 Jacobi method
	2.9.2 Gauss-Seidel method

	Examples in Chapter 2.
	Example 2.1. Application of rules for finding solution of a linear equationsystem
	Example 2.2. Finding an inverse matrix
	Example 2.3. Finding a solution from the inverted matrix
	Example 2.4. Laplace’s expansion rules
	Example 2.5. Calculation of a determinant by manipulations with rows
	Example 2.6. Calculation of eigenvalues
	Example 2.7. Crammer's rule
	Example 2.8. Gaussian elimination
	Example 2.9. Gaussian elimination with row pivoting
	Example 2.10. Calculating the determinant with Gaussian elimination
	Example 2.11. LU decomposition of a 3×3 matrix
	Example 2.12. Crout LU decomposition of a 3×3 matrix
	Example 2.13. Solving a linear equation system with LU decomposition
	Example 2.14. Matrix inversion with LU decomposition
	Example 2.15. LU decomposition of a 3×3 symmetric
	Example 2.16. LDLT decomposition of a 3×3 matrix

	Algorithms in Chapter 2.
	Algorithm 2.1. Gaussian elimination
	Algorithm 2.2. Gaussian elimination with raw pivoting
	Algorithm 2.3. Calculating the determinant with Gaussian elimination
	Algorithm 2.4. Crout reduction
	Algorithm 2.5. Crout LU decomposition
	Algorithm 2.6. Solving a linear equation system LUx = b
	Algorithm 2.7. Cholesky–Banachiewicz decomposition
	Algorithm 2.8. Cholesky–Crout decomposition

	Figures in Chapter 2.
	Fig. 2.1. Comparison of Gaussian elimination

	3. SEQUENTIAL ELIMINATION METHOD
	Sequential strategy
	3.1 SEM WITHOUT PIVOTING
	3.1.1 Elimination formulas
	Entering the first equation
	Entering the second equation
	Entering the kth equation
	Final solution

	3.1.2 Flowcharts
	3.1.3 Number of numerical operations
	3.1.4 Required memory
	3.1.5 Programming SEM
	3.1.6 Using computer programs

	3.2 SEM WITH ROW PIVOTING
	Entering the first equation with row pivoting
	Entering the second equation with row pivoting
	Entering the kth equation with row pivoting
	Solution obtained with row pivoting
	3.2.1 Flowcharts with row pivoting
	3.2.2 Programming SEM with row pivoting
	3.2.3. Using computer programs

	3.3 DETERMINANT WITH SEM
	Examples in Chapter 3.
	Example 3.1. SEM without pivoting
	Example 3.2. SEM without pivoting
	Example 3.3. Memory utilisation
	Example 3.4. SEM with pivoting

	Algorithms in Chapter 3.
	Algorithm 3.1. SEM without pivoting
	Algorithm 3.2. SEM subroutine in ANSI FORTRAN
	Algorithm 3.3. SEM functions in ANSI C
	Algorithm 3.4. Main program in ASNI FORTRAN
	Algorithm 3.5. Main function in ANSI C
	Algorithm 3.6. SEM with row pivoting
	Algorithm 3.7. SEM with row pivoting in ANSI FORTRAN
	Algorithm 3.8. SEM with row pivoting in ANSI C
	Algorithm 3.9. Determinant with SEM and row pivoting

	Tables in Chapter 3.
	Tab. 3.1. List of variables in Algorithm 3.2
	Tab. 3.2. List of functions and variables in Algorithm 3.3
	Tab. 3.3. Example of input and output files

	Figures in Chapter 3.
	Fig. 3.1. Summation of N numbers
	Fig. 3.2. Brief comparison of steps in SEM and Gaussian elimination
	Fig. 3.3. Draft comparison of Gaussian elimination and SEMoptimised for equation system with fully populated matrix
	Fig. 3.4. Flowcharts
	Fig. 3.5. Coefficients stored in a memory
	Fig. 3.6. Occupied memory in relation to number of actuallyentered equations
	Fig. 3.7. Flowchart illustrating usage of FORTRAN program in Algorithm 3.2
	Fig. 3.8. Flowchart illustrating the usage of C program in Algorithm 3.3
	Fig. 3.9. Brief comparison of steps in SEMand Gaussian elimination with row pivoting
	Fig. 3.10. Draft comparison of Gaussian elimination and SEM with row pivoting

	4. IMPROVED SEQUENTIAL SUBSTITUTION
	4.1 FIRST PHASE, ADDING EQUATION COEFFICIENTS
	4.2 SECOND PHASE, ELIMINATION
	Case 1, elimination of unknown variable.
	Case 2, elimination of summation variable.

	4.3 MEMORY REQUIREMENTS
	4.4 BACK-SUBSTITUTION
	4.5 COMPUTER PROGRAM
	Function init()
	4.5.1 Memory organisation
	4.5.2 Manipulation with indexes
	Locating an index
	Adding an index
	Removing an index
	Changing the index sign
	B-tree algorithm

	4.5.3 Manipulation with columns and rows
	Manipulation with columns
	Manipulations with rows
	Function findx()
	Function findz()
	Functions getrcx() and getrcz()

	4.5.4 First phase, adding equation coefficients
	4.5.5. Second phase, elimination
	4.5.6. Closing equation
	4.5.7 Removing equation
	4.5.8 Preparing the solution
	4.5.9 Setting known variables
	Function setx()

	4.5.10 Getting unknown variables
	Function getx()

	4.6 PIVOTING
	Row pivoting
	Column pivoting

	Examples in Chapter 4.
	Example 4.1. Memory requirements

	Algorithms in Chapter 4.
	Algorithm 4.1. Allocating memory and initialising global variables
	Algorithm 4.2. Locating an index in the list
	Algorithm 4.3. Adding an index to the list
	Algorithm 4.4. Removing an index from the list
	Algorithm 4.5. Changing the negative index to the positive index
	Algorithm 4.6. Removing the column and the row (two functions)
	Algorithm 4.7. Finding a row/column of the variable xi
	Algorithm 4.8. Finding row/column for variables zi / yi
	Algorithm 4.9. Getting row and column (two functions)
	Algorithm 4.10. The first phase, adding equation coefficients
	Algorithm 4.11. The second phase, elimination (two functions)
	Algorithm 4.12. Closing equation
	Algorithm 4.13. Removing equation
	Algorithm 4.14. Preparing the solution
	Algorithm 4.15. Setting known variable
	Algorithm 4.16. Getting unknown variable

	Tables in Chapter 4.
	Tab. 4.1.a. Global variables (first part)
	Tab. 4.1.b. Global variables (second part)

	Figures in Chapter 4.
	Fig. 4.1. Intermediate solution (4.3) in a form of table
	Fig. 4.2. Cases in adding a coefficient aij
	Fig. 4.3. Strictly banded matrix
	Fig. 4.4. Main program prototype
	Fig. 4.5. Hierarchy of functions
	Fig. 4.6. Map of arrays and pointers
	Fig. 4.7. B-tree objects
	Fig. 4.8. Equal loops for counting columns
	Fig. 4.9. Equal loops for counting rows
	Fig. 4.10. Finding row/column for xi
	Fig. 4.11. Finding row/column for summation and substitution variables zi / yi
	Fig. 4.12. First phase, adding equation coefficients aij
	Fig. 4.13. Second phase, elimination
	Fig. 4.14. Closing equation
	Fig. 4.15. Pivoting
	Fig. 4.16. Flowcharts for pivoting

	INDEXES
	INDEX OF EXAMPLES
	INDEX OF ALGORITHMS
	INDEX

	REFERENCES
	The University of Rijeka
	University of Rijeka Member institutions
	From the beginning …
	Rijeka
	Today’s University

	Publisher’s/Author’s address
	45°20’N 14°26’E

	Back cover

