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1. ROOT-FINDING METHODS 
 
Motivation for developing various root-finding methods arises from the 
requirement to approximate the roots of different functions with wanted accuracy 
by using as few numerical operations as possible.  
 
The roots of a function )(xf , also called the zeros of a function, are points on 
the abscissa where this function has the zero value, i.e. where 0)( =xf . To find 
a particular root, it is required to know 

- the first approximation of the root, hopefully close to the root (Fig. 1.1a), or 
- ideally, points that bracket the root (Fig. 1.1b). 

 

 
Fig. 1.1. Basic requirements: a – first approximation,  

b – points that bracket the root    
 
In an interval close to the root and to its first approximation 0x , or in the interval 

],[ ba  that brackets the root, a function needs to be well-behaved1.  

                                                 
1 The term „well-behaved“ has no fixed formal definition, and it depends on the subject. 
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Functions that are not well-behaved in an interval of interest have, for example, 

- singularity (Fig. 1.2a),  
- an infinite number of roots (e.g. )/1sin( x , Fig. 1.2b) , or 
- an extreme at the root (very difficult to find, Fig. 1.2c).       

 

 
Fig. 1.2. Functions with: a – singularity, b – infinite number 

of roots, c – extreme at the root 
 
During the history various root-finding methods have been developed. The oldest 
one is probably the Babylonian method that was used in Mesopotamia about 
1800 BC. That has been the most efficient iterative method1 for finding the 
square root known until today. 
 
The ancient Babylonians had a nice method of computing square roots by using 
only simple arithmetic operations. For example, let the rational approximation for 
the square root of the number a begin with an initial estimate 0x . If the kth 
estimate kx  is lesser than a , then kxa /  is greater than a , or, vice versa, if 

kx  is greater than a , then kxa /  is less than a . It follows that the average of 
these two numbers, kx  and kxa / , gives a better estimate 

 
2

/
1

kk
k

xaxx +=+ . (1.1) 

This formula2 is sometimes attributed to Heron of Alexandria (about 10-70 AC) 
because he described it in his Metrica, but it was undoubtedly known to the 
Babylonians much earlier. For that reason, in this book the method is referred to 
as the Babylonian/Heron method. 
                                                 
1 The iteration means 1. the act of repeating, a repetition; 2. (Mathematic) a problem-solving 
or computational method in which a succession of approximations, each building on the 
one preceding, is used to achieve desired degree of accuracy, or 3. an instance of the use 
of this method; 4. (Computers) a repetition of a statement or statements in a program.   
2 The same formula is developed in Chapter 1.5.1, by specialisation of Newton’s method. 
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The approximation kx  converges very rapidly to the square root of a, as shown 
in Example 1.1. When the approximation is close to the solution, the number of 
accurate digits doubles with each iteration. Such convergence is called the 
quadratic convergence. 
 

Example 1.1. Finding a square root with the Babylonian/Heron method. 
 
Successive approximations in finding the square root of 2=a  with the 
Babylonian/Heron, starting with ax =1  as the first estimate, are listed in Tab. 
1.1. The recursion (1.1) is used.  
 
Tab. 1.1. Successive approximations of the square root of 2=a  

k      xk 
Accuracy 

digits 
0      2,000 000 000 000 000 000 000 000 000 000  
1      1,500 000 000 000 000 000 000 000 000 000 1,5 
2      1,416 666 666 666 666 666 666 666 666 667 3 
3      1,414 215 686 274 509 803 921 568 627 451 6 
4      1,414 213 562 374 689 910 626 295 578 890 12 
5      1,414 213 562 373 095 048 801 689 623 503 24 
6      1,414 213 562 373 095 048 801 688 724 210 (48) 

 
The number of accurate digits was doubled with the each iteration so that the 
method manifests the quadratic convergence. 

 
1.1 CLASSIFICATION OF ROOT-FINDING METHODS 
 
The root-finding methods can be classified either as  

• General root-finding methods, or 
• Specialised (problem specific) root-finding methods. 

General root-finding methods are iterative (use recursive formulas or/and 
recursive algorithms). Efficiency, applicability and reliability of a particular 
general root-finding method depend on a function, the roots of which are to be 
found. For that reason, it is not possible to proclaim the best one. 
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General root-finding methods can be classified as 

• Open root-finding methods, 
• Bracketing root-finding methods or 
• Multi-dimensional root-finding methods. 

The open root-finding methods have not a predefined initial interval that brackets 
the root (Fig. 1.1a). Unlike the open methods, the bracketing methods are 
characterised by the initial interval containing the root (Fig. 1.1b). In each 
iteration, the interval is divided into two smaller intervals. The one that contains 
the root is used in the next iteration.  
 
Unlike the general root-finding methods, which are all iterative, the specialised 
root-finding methods can be either direct or iterative. Specialised iterative 
methods are usually developed by specialisation of general root finding methods. 
However, any problem can be solved by several methods, but the efficiency and 
reliability of the particular specialised method must be separately found out. 
 
The best-known root-finding methods described in this chapter are: 
 
      OPEN ROOT-FINDING METHODS (CHAPTER 1.2) 

1. Fixed point iteration, repetitive approximation of the root of a function  
xxg =)( , by using the recursion formula )(1 nn xgx =+ , which is 

expected to converge to the root.  

2. Newton’s method, also known as the Newton-Rapson method, consists in 
successive approximation of the root by using the tangent of a function to 
find the next approximation. The method is reliable and fast with 
quadratic convergence if applied to the single root of a continuous 
function that does not change the sign of the first derivative in the 
interval between the first estimate and the exact root. 

3. Halley’s method, is similar to Newton’s method, but it uses the first two 
derivatives of a function. The convergence is cubic, but each iteration 
requires computing a function as well as its first and second derivatives. 

4. Householder's methods, the class of root-finding algorithms using 
derivatives up to order 1+d . If 1=d , the method is equal to Newton’s 
method, whereas if 2=d , the method is equal to Halley’s method. The 
rate of convergence is 1+d . 
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5. Secant method is similar to Newton’s method, but it uses the secant 
through the last two computed points instead of the tangent in the single 
point. The convergence is superlinear (with order 1,62). 

6. Steffensen's method is similar to Newton’s method. It also achieves 
quadratic convergence, but it does not use the derivative. Instead of the 
first derivative, a slope function is used. The main advantage of 
Steffensen's method is that it has quadratic convergence like Newton's 
method, but does not require any development of the derivative.  

7. Müller's method, also known as the Müller-Traub method, uses the last 
three points to determine the coefficients of the parabola baxy += 2 , 
and takes the intersection of the parabola and the x-axis to be the next 
approximation. The order of convergence is approximately 1,84. 

8. Inverse quadratic interpolation constructs an “inverse” parabola through 
the last three points. Instead of finding the coefficients of the related 
quadratic equation bafx += 2 , the method uses inverse quadratic 
interpolation to find the next approximation of the root. 

9. Modified secant method uses the last three points to construct a rational 
function and takes the intersection of its graph and the x-axis as the next 
approximation of the root. 

 
      BRACKETING ROOT-FINDING METHODS (CHAPTER 1.3)  

10. Bisection method, repetitive bisection of the interval containing the root, 
is the most robust and reliable root-finding method with predictable 
number of numerical operations, applicable to any continuous function 
when the minimisation of numerical operations is not a main priority. 

11. Dekker’s method is a combination of the bisection method and the linear 
interpolation or extrapolation. The bisection provides reliability, while 
the interpolation increases the speed. 

12. Brent’s method is a complex root-finding algorithm that combines the 
bisection method with the inverse quadratic interpolation. It has not only 
the reliability of the bisection method but it can be also as quick as some 
less reliable methods. 

13. False position method, also known as Regula falsi method, consists in 
repetitive splitting the interval containing the root by using linear 
interpolation on the actual interval. In comparison with the bisection 
method, in some cases it is faster, but in some cases it is slower and not 
so reliable and predictable. The used iteration formula is formally equal 
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to those used in the secant method, but with different rules for retaining 
the two points for the next iteration. 

14. Ridder’s method is a modification of the false position method based on 
the use of exponential function instead of linear interpolation. This 
method is extraordinary robust like the bisection method. The rate of 
convergence is 1,41 per each function evaluation. 

15. Modified false-position method uses three points to construct a rational 
function at each iteration, and takes the intersection of its graph and the 
x-axis to be the next approximation.  

16. Illinois algorithm is the improved “modified false position method” that 
prevents the retention of the old points. This is done by determining the 
optimal downscaling coefficient. The algorithm is simple and reliable 
with the rate of convergence 1,44 per each function evaluation. 

 
      SPECIALISED ITERATIVE METHODS (CHAPTERS 1.4 TO 1.7)  

17. Newton-Raphson division is the application of Newton’s method to the 
division (Chapter 1.4). 

18. Square-root methods (Chapter 1.5) 

a. The Babylonian/Heron method, the oldest and possibly the most 
efficient iterative method for finding the square root of a real 
number. It can be developed from Newton’s recursion formula. 

b. Methods based on Halley’s and Householder’s recursion 
formulas. 

19. Inverse square-root methods (Chapter 1.6), the methods for computing 
the inverse of the square-root based on Newton’s, Halley’s and 
Householder’s recursion formulas. 

20. N-th root algorithms (Chapter 1.7), the methods for computing nth root 
based on Newton’s and Halley’s iteration formulas.  

 
       MULTI-DIMENSIONAL ROOT-FINDING METHODS (CHAPTER 1.8) 

21. Multi-dimensional fixed point iteration; the generalisation of the one- 
-dimensional fixed point iteration. 

22. Multi-dimensional Newton’s method, the generalisation of the one-
dimensional Newton’s method. 

23. The Gauss-Newton method combines Newton’s iteration formula and the 
Gaussian method of least squares. 
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1.2 OPEN ROOT-FINDING METHODS 
 
The open root-finding methods are iterative methods. With the exception of the 
fixed-point iteration, the common property of open methods is that the next guess 
of the root is computed by extrapolation. The extrapolation can be linear or 
higher order, depending on the number of sampling points in which a function 
and possibly its derivatives are calculated (Tab. 1.2). 
 
Tab. 1.2. Open methods classified by order of extrapolation 

Extrapolation Points Derivatives Method Chapter 

- 1 (none) Fixed-point 1.2.1 

Linear  

1 )(xf ′  Newton’s 1.2.2 

2 (none) 
Secant 1.2.5 

Steffenson’s 1.2.6 

Quadratic 

1 )(xf ′ , )(xf ′′  Halley’s 1.2.3 

3  (none) 
Müller's 1.2.7 

Inverse 
quadratic 1.2.8 

Cubic 1 )(xf ′ , )(xf ′′ , )(xf ′′′  Householder’s 
3rd order 

1.2.4 
High order 1 )(xf ′ … )()( xf n  Householder’s 

nth order 
Rational 
function 3 (none) Modified 

secant 1.2.9 

 
Open methods have some advantages and disadvantages (Tab. 1.3). Their 
common disadvantage is that the first guess must be sufficiently close to the root. 
As the first guess is closer to the root, the convergence will be faster. But even 
then, the convergence is not always guaranteed. The possibility that the particular 
method will fail usually depends not only on the choice of the first guess, but also 
on functions and the multiplicity of their roots. However, in some cases, as in the 
case of the Babylonian method (Chapter 1.5.1), which can be derived by a 
specialisation of Newton’s method, the convergence is always guaranteed. 
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Tab. 1.3. Main advantages and disadvantages of the open root-finding methods 

Main advantages Main disadvantages 

1.  Fixed point iteration  CHAPTER 1.2.1 

The simplest method. If convergence exists, it can be slow.  

2. Newton’s method  CHAPTER 1.2.2  

Reliable and fast method with the 
quadratic convergence. 

The first derivative of a function must 
be developed. 

3. Halley’s method  CHAPTER 1.2.3  

Reliable and fast method with the 
cubic convergence.  

The first and second derivative of a 
function must be developed. 

4. Householder's methods  CHAPTER 1.2.4  

Reliable and fast methods with the 
convergence order 1+d . 

The first d derivatives of a function 
must be developed. 

5. The Secant method  CHAPTER 1.2.5 

Doesn’t require the first derivative. 
Superlinear convergence (order 1,62). 

Requires two points to define secant. 
Slower convergence. 

6. Steffensen's method CHAPTER 1.2.6 

Doesn’t require the first derivative. 
Quadratic convergence. 

Double function evaluation in each 
iteration. 

7. Müller's method  CHAPTER 1.2.7  

Doesn’t require derivatives. 
The order of convergence is 1,84. 

Computes three points to define the 
interpolation parabola. 

8. Inverse quadratic interpolation  CHAPTER 1.2.8  

Doesn’t require derivatives. Requires three points for inverse 
interpolation with the parabola. 

9. Modified secant method  CHAPTER 1.2.9  

Doesn’t require derivatives. Requires three points for the 
extrapolation with rational function. 

 



1. Root Finding Methods 21 

 

1.2.1 Fixed point iteration 
The fixed point iteration is probably the simplest root finding method [1]. It 
consists in repetitive approximation for a root of a function )(xf  by using the 
recursion formula 
  )(1 kk xgx =+ , (1.3) 

where auxiliary function 
 xxfxg += )()( . (1.2) 

Two examples of fixed point iteration are given in Fig. 1.3. The root is 
determined by an intersection of the curve )(xgy =  and the line xy = . The 
example a illustrates a convergence, while the example b illustrates a divergence. 
 

 
Fig. 1.3. Fixed point iteration, a – convergent, b – divergent  

 
The main disadvantage of the method is that the convergence is not always 
guaranteed. It will be guaranteed only if 1|)(| <′ kxg . 
 

Example 1.2. Application of fixed-point iteration to the function 
 4,2ln)( −+= xxxf . (1.4) 
The iteration formula is 
 kk xx ln4,21 −=+ . (1.5) 

Starting with 20 =x , the values in Tab. 1.4 are obtained. In the given 
example, the iteration is very slow although the first guess is close to the root. 
The calculated values oscillate around the true value. The accuracy of 10 
digits is obtained after 34 steps – that is roughly one bit per step. 
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Tab. 1.4. Application of fixed-point iteration to the function (1.4) 

k xk k xk k xk 

0 2,000 000 000 00 7 1,804 911 890 15 14 1,807 904 231 22 
1 1,706 852 819 44 8 1,809 488 223 73 15 1,807 831 708 89 
2 1,865 348 781 67 9 1,806 955 944 02 16 1,807 871 823 73 
3 1,776 551 950 09 10 1,808 356 369 42 17 1,807 849 634 50 
4 1,825 325 621 01 11 1,807 581 650 48 18 1,807 861 908 25 
5 1,798 241 606 41 12 1,808 010 152 82 19 1,807 855 119 13 
6 1,813 190 697 89 13 1,807 773 122 55  1,807 857 537   

 
1.2.2 Newton’s method 

Newton’s method1 is often referred to as one of the best-known methods for 
successively finding better approximations to the roots of real functions. The 
algorithm is the first in the class of Householder’s methods (Chapter 1.2.4). It 
often converges quickly, especially if the first iteration begins sufficiently near 
the root. Unfortunately, when the first iteration begins far from the root, 
Newton’s method can fail to converge. 
 
Newton’s method requires a successive calculation of a function )( kk xff =  and 
its first derivative )( kk xff ′=′  at sampling points kx . The first iteration begins 
with the calculation of )( 00 xff =  and )( 00 xff ′=′  in an arbitrary initial value 

0x , which is reasonably close to the root.  
 
Starting with an initial value 0x , a tangent through the point ( 0x , )( 0xf ) can be 
constructed, as it is illustrated in Fig. 1.4. The tangent has the equation 

 )()( )()( 000 xfxxxfxy +−′= . (1.6) 

The point )0,( 1x  in which the tangent intersects the x-axis, i.e. such a value 1x  
that 0)( 1 =xy , can be found by solving the following equation for 1x : 

 0)()( )( 0010 =+−′ xfxxxf . (1.7) 

                                                 
1 Newton’s method is also known as the Newton-Rapson method, named after Isac 
Newton and Joseph Rapson 
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3. SEQUENTIAL ELIMINATION METHOD 
 
The sequential elimination method (SEM) is the simple direct method for solving 
the linear equation system that uses much less computer memory than Gaussian 
elimination without increasing the number of numerical operations [22,14]. 
Moreover, a size of utilised memory gradually changes, from zero to maximum 
and back to zero. As a result, when Gaussian elimination forces the operating 
system to swap data between the fast physical and the slow virtual memory1, the 
SEM algorithm can run most of the time (or even all the time) using only fast 
physical memory, i.e. without data swaps. Omitting data swaps is manifested in 
remarkable speedup of the SEM algorithm. The presented algorithm is optimized 
for solving regular linear equation system whose matrix is fully populated2.  

                                                 
1 Computer has fast (but expensive) central memory and slow (but cheap) peripheral 
memory. Central memory is virtually extended to the part of peripheral memory; thus it is 
talking about physical (but fast) part and virtual (but slow) part of central memory, or just 
about physical and virtual memory. The actually non-processing data in physical memory 
are swapped with the actually required data that has been previously swapped into virtual 
memory. Data swaps are performed automatically by the operating system whenever  
physical memory is overloaded. 
2 Historically, SEM [22] arises through specialisation of a much older general method 
(1983. [13]), which can be efficiently used for solving linear equation systems as well as 
series of linear equation systems, either with populated or sparse system matrices [17, 23, 
24]. If the matrix is sparse, there is no need to compute a complete solution. This 
provides remarkable reductions of utilised memory size and numerical operations. 
Moreover, number of numerical operations can be drastically reduced in solving series of 
linear equation systems, in which the particular system is a modification of the previous 
one [17, 18, 24]. The improved version of this general method is described in Chapter 4. 
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In the standard Gaussian elimination (Algorithm 2.1), the coefficients of 
equations are all stored in computer memory before the calculation begins. This 
strategy avoids minimisation of the required memory size. In the SEM, the 
coefficients of each equation are used for elimination immediately after the 
equation is entered, and there is no further need to keep them in computer 
memory [13,22]. The memory stores only the auxiliary coefficients of 
intermediate linear equation system defined by previously added equations. For 
that reason, the size of utilised memory gradually changes from zero to 
maximum and back to zero, and it is always remarkable less than that required 
for the Gaussian elimination method. 
 
Sequential strategy  
The principle of sequential strategy used in SEM, can be illustrated on the 
summation of N numbers (Fig. 3.1). Numbers can be first stored in memory and 
then summed (typical summation), or it can be done in steps, where each step 
consists in entering the number and adding it to the sum (sequential summation).  
 

 
Fig. 3.1. Summation of N numbers3 

                                                 
3 In all flowcharts it is assumed that unspecified increment in loops is +1. Therefore, 

Ni   to1=  means Ni  ..., ,2 ,1= . In addition, loop bai   to=  will not be executed if ba > , 
except if “step −1” is specified. For example, if 1=k , the loop 1  to1 −= kr  will be 
skipped. 

STOP 
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k

Sequential 
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STOP 
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Nk   to1for =

Nk   to1for =
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)(ifak =

k

Output sum

kasumsum +=

k



3. Sequential Elimination Method 175 

 

Example 3.3. Memory utilisation. 
 
The equation system with 000 10=N  equations has a matrix with 

810)1( ≈+NN  coefficients. If this system is solved by using Gaussian 
elimination, then the whole matrix is set before elimination. Assuming that 
one extended double precision FPN occupies 10 bytes, the matrix of the 
equation system will occupy almost 1 Gb of memory12 (Fig. 3.6). 
 

 
 

Fig. 3.6. Occupied memory in relation to number of actually 
entered equations for 000 10=N  

 
To solve the system of 000 10=N  equations, the SEM initially occupies 

kb 98  for storing 001 101=+N  coefficients of the first equation. The 
occupied memory gradually rises up to Mb 240≈  when the number of 
coefficients reaches its maximum 62 1025)1(4/)1( ⋅≈+++ NN . After that, 
the occupied memory gradually falls to kb 98  that contains the final solution 
( 000 10=N  coefficients). 

                                                 
12 Precisely Mb 954  ( Mb 1024Gb 1 = , kb 1024Mb 1 = , bites 1024kb 1 = ). 
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3.1.5 Programming SEM 

A brief description of steps in SEM without pivoting is given in Algorithm 3.1. 
The same procedures are then written in the program languages ANSI 
FORTRAN and ANSI C (Algorithms 3.2 and 3.3). The use of these programs is 
supported by the main programs in the Algorithm 3.4 and 3.5 which can be used 
as a prototype for user’s own program. The programs were published in [18, 22]. 
 

Algorithm 3.1. SEM without pivoting 

// Program can be divided into eight steps 
//  Step 1 
    Allocate memory and set initial values  
    0=k    // An initial value of the equation counter 
// Step 2 
A: 1+= kk   Increment equation counter ( 1+= kk ) 
     Obtain and store coefficients kja  of the kth equation  
// Step 3 
     if 1>k  then // intermediate solution of the first 1−k  unknowns are known 
     // Eliminate unknowns 1x  to 1−ix  in the kth equation 

         ∑
−

=

−=+=∀
1

1

   )1 ..., ,(
k

r
rjkrkjkj caaaNkj  

      endif  
// Step 4 (assuming that 0≠kka ) 
      kkkjkj aaaNkj /   )1,...,1( =++=∀  
      // note: it is convenient to delay storing coefficients kja  in kjc   
// Step 5  
      if 1>k  then // eliminate unknown kx  in the first 1−k  equations 
 kjikijij acccNkjki −=++=∀−=∀   )1 ..., ,1 )1 ..., ,1((   
      endif 
// Step 6  Store kja  in kjc   
      kjkj acNkj =++=∀    )1 ..., ,1(   
// Step 7 
 if Nk <  then goto A; endif  //“A” is a label at the beginning of the step 2 
   Output results 
   Free allocated memory  
end 
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Fig. 4.13. Second phase, elimination of a - unknown variable xj ,  

b - summation variable zi 
 
4.5.6. Closing equation  
When a sequence (or all) coefficients of a particular equation are added, then that 
equation should be closed by using the function closeeq(i,k). A prototype of this 
function is given in Algorithm 4.12. It has two arguments: an index i of the 
equation to be closed and a flag k.  
 
If the equation has a form ...=iz  (with 0=iy ), then the elimination of unknown 
variable jx  must be done by using the function elimx( ) (equation ...=iz is transfor-
med into ...... ij yx = ). The unknown variable jx  that will be eliminated is chosen 
either by the implicit rule ij = , or by row pivoting (the function rpivot( )). If flag k 
is set ( 0>k ), then the equation is closed forever by removing the column under iy . 
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